Steps required to use the nRF8001:
Download the nRFgo studio from the nordicsemi.com website.
[image:][image:]
Getting started with the my_project example in the nRF8001 SDK for Arduino
The my_project example, provides a skeleton project to setup the nRF8001, advertise to an iPhone and get connected to the iPhone. You can add your code to this project to send data to the iPhone. Use the functions in lib_aci.c to use the nRF8001 command set.
The queue interface to the nRF8001 ACI
All ACI commands from the application to the nRF8001 are placed in the tail of the ACI command queue. All ACI events received from the nRF8001 are placed in the tail ACI Event queue. The RDYN line interrupt handler reads ACI commands from the head of the ACI command queue and and places ACI Events that are received in the tail of the ACI event queue.
When a command is placed in the command queue the REQN line to the nRF8001 is made low.
An interrupt is configured in the AVR to interrupt the cpu when the RDYN line is LOW. When the RDYN line is made low by the nRF8001, the AVR ATmega328 is interrupted, this is an interrupt on level. The ATmega328 can wakeup only on a level based interrupt and not on an edge interrupt. Other MCUs that support interrupt and wakeup from sleep on falling edge should use the falling edge in the RDYN line as the interrupt trigger.
[bookmark: _GoBack]The SPI clockout and sending of an ACI command and receiving of an ACI event with the nRF8001 is done in the RDYN line interrupt. The SPI clockout can also be done in the main context to reduce the time spend in the interrupt (see both figures below)
The ACI commands are sent using functions defined in the lib_aci.h
The ACI events are pulled out from the ACI Event queue using the lib_aci_event_get(). The application can then process the ACI Events.

Figure 1 SPI in Interrupt context
The my_project example implements the below steps:
1. Setup of the nRF8001. Use the utility function do_aci_setup() that will take the setup data generated from the nRFgo studio and setup the nRF8001. When the nRF8001 is setup successfully an ACI Device Started Event is received.
2. lib_aci_connect has been called to advertise to an iPhone (ACI Connect command)
a. If you are using the ACTIVE line of the nRF8001 you can see by the activity on that line that the radio is sending beacons(advertising) and waiting for the iPhone to connect. The ACTIVE line should be configured for use in the nRFgo studio.
3. The iPhone has connected and the ACI Connected Event has been received in the lib_aci_event_get()
4. The iPhone app has subscribed to the Characteristic for Notifications and the pipe is available. The ACI Event Pipe Status is received in the lib_aci_get_event(). Use the lib_aci_is_pipe_available utility function to check if the specific pipe is available for use. When the pipe is available the lib_aci_send_data() can be be used to send a ACI Send Data command to the nRF8001.
Sending data from the application processor to the iPhone.
Check that credit is available. The aci_state.data_credit_variable is used to track the credits available to the application.
When aci_state.data_credit _available is > 0
Use lib_aci_send_data() to send data
After the nRF8001 sends the data in the ACI Send Data command to the iPhone, then iPhone radio will acknowledge the data on the air. This ack is sent as the ACI DataCredit Event to the application.
The ACI DataCredit event informs the application controller that the data has been sent successfully.
The ACI PipeError event informs that application controller that the send attempt on the data has failed.
Receiving data from the iPhone
The “ACI Event Data Received” is returned by the lib_aci_event_get() function when the iPhone sends data to the application.

P.T.O.

Alternative architecture to run the SPI in main context. The interrupt is used to flag that the RDYN line has changed state from HIGH to LOW and the this is placed in a state variable (varRdyn). The rest of the queue based architecture is preserved. This reduces the time spent in the interrupt context as the SPI can take a few microseconds to be processed.
mcu_sleep //mcu is sleeping
If varRdyn == 1
 Run the SPI
 set varRdyn = 0
 m_rdyn_handle()

Figure 2 Using the SPI in main context, interrupt to get state of the RDYN line (falling from HIGH to LOW)
image4.emf
CCCCEEE

App puts the ACI

command in the

tail of the

Command Queue

ACI Command Queue

(Commands to the

nRF8001)

ACI Event Queue

(Events from the

nRF8001)

The ACI command at the Head of the ACI

command queue is taken and sent over the

SPI.

The interrupt is on the

RDYN line

(LOW for ATmega328,

can be made falling edge

as well for mcus that

support wake up on

interrupt with falling

edge)

App gets the ACI

Event in from the

head of the Event

Queue

lib_aci_event_get()

Interrupt from RDYN line on the

nRF8001

The SPI to the nRF8001 is run in

the interrupt context.

The ACI Event received is placed at the tail

of the ACI Event Queue

If any command is

present in the command

queue, the REQN/CSN

line of the nRF8001 is

pulled low by the MCU

Tail

Head

Head

Tail

Interrupt

Context

Set the REQN/CSN line low

Set the REQN/CSN line high

after the SPI is finished

1

2

3

4

5

6

oleObject1.bin
C

C

C

C

E

E

E

App gets the ACI Event in from the head of the Event Queue
lib_aci_event_get()

App puts the ACI command in the tail of the Command Queue

Interrupt from RDYN line on the nRF8001

The interrupt is on the RDYN line
(LOW for ATmega328, can be made falling edge as well for mcus that support wake up on interrupt with falling edge)

The ACI command at the Head of the ACI command queue is taken and sent over the SPI.

ACI Command Queue (Commands to the nRF8001)

ACI Event Queue
(Events from the nRF8001)

The SPI to the nRF8001 is run in the interrupt context.

The ACI Event received is placed at the tail of the ACI Event Queue

If any command is present in the command queue, the REQN/CSN line of the nRF8001 is pulled low by the MCU

Tail

Head

Head

Tail

Interrupt Context

Set the REQN/CSN line low

Set the REQN/CSN line high after the SPI is finished

1

2

3

4

5

6

image5.emf
status =

lib_aci_send_data

status

ACI command buffer full.

The application code to be modified so

that the application waits for an ACI

Event before sending the next ACI

command

ACI commands can be sent back to

back and then an ACI event can be

waited for before sending a new stream

of ACI commands

false

ACI Send Data command is

now placed successfully in ACI

Command queue

Lower the REQN line of the

nRF8001

Wait for the RDYN line of the

nRF8001

to become LOW

true

Clock out the SPI

buffer.

Send ACI command

and receive ACI

Event (if any)

nRF8001 RDYN line LOW

Place the

received ACI

Event in the ACI

Event queue

Each ACI event is returned

 using the lib_aci_event_get

Check that credit is

available to send.

aci_state.data_credit_available > 0

true

false

oleObject2.bin

status = lib_aci_send_data

status

ACI command buffer full.

The application code to be modified so that the application waits for an ACI Event before sending the next ACI command

ACI commands can be sent back to back and then an ACI event can be waited for before sending a new stream of ACI commands

false

ACI Send Data command is now placed successfully in ACI Command queue

Lower the REQN line of the nRF8001

Wait for the RDYN line of the nRF8001
to become LOW

true

Clock out the SPI buffer.
Send ACI command and receive ACI Event (if any)

nRF8001 RDYN line LOW

Place the received ACI Event in the ACI Event queue

Each ACI event is returned
 using the lib_aci_event_get

Check that credit is
available to send.
aci_state.data_credit_available > 0

true

false

image6.emf
CCCCEEE

App puts the ACI

command in the

tail of the

Command Queue

ACI Command Queue

(Commands to the

nRF8001)

ACI Event Queue

(Events from the

nRF8001)

The ACI command at the Head of the ACI

command queue is taken and sent over the

SPI.

The interrupt is on the

RDYN line. varRdyn = 1

(LOW for ATmega328,

can be made falling edge

as well for mcus that

support wake up on

interrupt with falling

edge)

App gets the ACI

Event in from the

head of the Event

Queue

lib_aci_event_get()

Interrupt from RDYN line on the

nRF8001

The SPI to the nRF8001 is run in

the main context.

mcu_sleep //mcu is sleeping

If varRdyn == 1

 Run the SPI

 set varRdyn = 0

 m_rdyn_handle()

The ACI Event received is placed at the tail

of the ACI Event Queue

If any command is

present in the command

queue, the REQN/CSN

line of the nRF8001 is

pulled low by the MCU

Tail

Head

Head

Tail

Interrupt

Context

Set the REQN/CSN line low

Set the REQN/CSN line high

after the SPI is finished. If the

ACI command Queue has more

commands left, pull the REQN/

CSN line low immediately

1

2

3

4

5

6

oleObject3.bin
C

C

C

C

E

E

E

App gets the ACI Event in from the head of the Event Queue
lib_aci_event_get()

App puts the ACI command in the tail of the Command Queue

Interrupt from RDYN line on the nRF8001

The interrupt is on the RDYN line. varRdyn = 1
(LOW for ATmega328, can be made falling edge as well for mcus that support wake up on interrupt with falling edge)

The ACI command at the Head of the ACI command queue is taken and sent over the SPI.

ACI Command Queue (Commands to the nRF8001)

ACI Event Queue
(Events from the nRF8001)

The SPI to the nRF8001 is run in the main context.
mcu_sleep //mcu is sleeping
If varRdyn == 1
 Run the SPI
 set varRdyn = 0
 m_rdyn_handle()

The ACI Event received is placed at the tail of the ACI Event Queue

If any command is present in the command queue, the REQN/CSN line of the nRF8001 is pulled low by the MCU

Tail

Head

Head

Tail

Interrupt Context

Set the REQN/CSN line low

Set the REQN/CSN line high after the SPI is finished. If the ACI command Queue has more commands left, pull the REQN/CSN line low immediately

1

2

3

4

5

6

image2.png

image3.png

