The goal of this example is to remove the Over The Air (OTA) write for the Devic Name Characteristic.
Start with the OTA write enabled and from application controller . (In the nRFgo studio settings in nRF8001 configuration -> GAP settings -> Writeable Device name.)
To remove the OTA write alone, we need to change the Characteristic properties of the Device Name characteristic to only Read.
We also need to change the permissions of the Device Name Characteristic value to have only the Read Permission.
=
CRC used:
Polynomial for CRC-16-CCITT [image: https://upload.wikimedia.org/wikipedia/en/math/d/0/2/d0279fbd8e8844f8cbef81a76f006b93.png](X.25, V.41, HDLC, XMODEM, Bluetooth, PACTOR, SD, many others; known as CRC-CCITT)
Initial seed value for the CRC is FFFF
The CRC is done on all setup ACI packets including the opcode and length excluding only the last 2 bytes which is the CRC.
=

The format of all the Setup messages generated by the nRFgo studio is
<Len> <Opcode = Setup i.e. 0x06> <Target> <Offset within the Target>
The Target we want to modify is the "ATTDB".
The value of target "ATTDB" = 0x20.
The device name is usually the first message in this target so the offset we use is 0x00.
Look for the message <Len> 0x06 0x20 0x00.
 {0x00,\
 {\
 { header } { attdb_head_t }{handle}{UUID }{Value } 0x1f,0x06,0x20,0x00,0x04,0x04,0x02,0x02,0x00,0x01,0x28,0x00,0x01,0x00,0x18,0x04,0x04,0x05,0x05,0x00,\
 0x02,0x28,0x03,0x01,0x0e,0x03,0x00,0x00,0x2a,0x04,0x14,0x14,\	Comment by Edwin, David: Change this to 0x02 to have only the Read property.

Properties Value Description
Broadcast 0x01 If set, permits broadcasts of the Characteristic
Value using Characteristic Configuration
Descriptor

Read 0x02 If set, permits reads of the Characteristic
Value using procedures defined in Section
4.8

Write Without
Response
0x04 If set, permit writes of the Characteristic
Value without response using procedures
defined in Section 4.9.1.

Write 0x08 If set, permits writes of the Characteristic
Value with response using procedures
defined in Section 4.9.3 or Section 4.9.4.

Notify 0x10 If set, permits notifications of a Characteristic
Value without acknowledgement using the
procedure defined in Section 4.10
 },\
 },\
=
Change 0x14 to 0x04 for the permission of the value of the Device Name to be changed to Read.
After this is done. Regenerate the CRC and update the CRC in the setup data. The last 2 bytes of the setup data is the CRC. The CRC is done on all setup ACI packets including the length and opcode excluding only the last 2 bytes which is the CRC. Ignore the 0x00 for all CRC calculations.
==
To change the Read permission bits of any 1 Characteristic value (with Read in its Characteristic property) from "plaintext" (which is created from the GATT Server marked as "No Security Required", to "authenticated encrypted" b11.

Modify the 2 Read Permissions bits for the Characteristic Value
uint8_t rd:2; /**< Read permisions (none, plaintext, authenticated plaintext, authenticated encrypted) */
[bookmark: _GoBack]You also need to set the Device setting bits which map to nRF8001 configuration -> Device Security back to “Security Required”
You can find the bits by also comparing the Setup between "Security Required" and "No Security Required".

The message uses the structure as below
/** @file
 *
 * @brief This header file contains ATT DB internl data types
 * Inside the ATTDB, handles and UUIDs are stored in BE and values in LE
 * Please note that the ATT protocol requires data in LE format
 * ATTDB_P2D macros store data in BE, for handles and UUIDs
 * uuid_encode with UUID_P2U_UINT16 stores data in LE, for values
*/

/** @brief Attribute permissions and length field
 */
typedef struct {
 /* octet 0 */
 uint8_t mlen1:2; /**< MSb of max len, refer Macros section in attdb.c */
 uint8_t valid:1; /**< Valid record */
 uint8_t bcast:1; /**< Broadcastable record, functionality implemented in upper layer, present for info purposes */
 uint8_t notify:1; /**< Notifiable record, functionality implemented in upper layer, present for info purposes */
 uint8_t ind:1; /**< Indicatable record, functionality implemented in upper layer, present for info purposes */
 uint8_t flighty:1; /**< Flighty/volatile record */
 uint8_t locked:1; /**< Lock (RFI) */

 /* octet 1 */
 uint8_t vlen1:2; /**< MSb of actual len, refer Macros section in attdb.c */
 uint8_t rd:2; /**< Read permisions (none, plaintext, authenticated plaintext, authenticated encrypted) */
 uint8_t wr:2; /**< Write permisions (none, plaintext, authenticated plaintext, authenticated encrypted) */
 uint8_t ard:1; /**< Read authorization (RFI) */
 uint8_t awr:1; /**< Write authorization (RFI) */

 /* octet 2 */
 uint8_t mlen0:8; /**< LSb of max len, refer Macros section in attdb.c */

 /* octet 3 */
 uint8_t vlen0:8; /**< LSb of actual len, refer Macros section in attdb.c */

} attdb_head_t;

/** @struct attdb_record_head_t
 *
 * @brief Attribute DB values table record header type
 */
typedef struct {
 /** Attribute DB permissions and length */
 attdb_head_t head;
 /** Attribute DB entry handle */
 attdb_handle_t handle;
 /** UUID of the attribute */
 uuid_t uuid;
 /** Attribute Value */
 uint8_t value[1];
} attdb_record_head_t;

image1.png

