//Libraries
#include <LiquidCrystal.h> //LCD library
#include <SoftwareSerial.h> //SoftwareSerial library
#include <OneWire.h>
#include <DallasTemperature.h>
#include <SPI.h> //SPI library for SD card
#include <SD.h> //SD card library

//Serial ports
#define orprx 2 //define what pin orp rx is going to be
#define orptx 3 //define what pin orp Tx is going to be
SoftwareSerial orpserial(orprx, orptx); //define the ORP soft serial port
#define phrx 14 //define what pin pH rx is going to be
#define phtx 15 //define what pin pH Tx is going to be
SoftwareSerial phserial(phrx, phtx); //define the pH soft serial port

//Temperature probe setup
#define ONE_WIRE_BUS 19 // Data wire is plugged into pin 19 on the Arduino
OneWire oneWire(ONE_WIRE_BUS); // Setup a oneWire instance to communicate with any OneWire devices
DallasTemperature sensors(&oneWire); // Pass our oneWire reference to Dallas Temperature.
DeviceAddress insideThermometer = { 0x28, 0xB4, 0x6B, 0xC8, 0x04, 0x00, 0x00, 0x1F }; // Assign the addresses of your 1-Wire temp sensors.

//define ORP variables
char orp_data[20]; //20 byte character array to hold ORP data
char orp_computerdata[20]; //20 byte character array to hold incoming data from a pc
byte orp_received_from_computer=0; //we need to know how many character have been received.
byte orp_received_from_sensor=0; //we need to know how many character have been received.
byte orp_startup=0; //used to make sure the arduino takes over control of the ORP Circuit properly.
float ORP=0; //used to hold a floating point number that is the ORP
byte orp_string_received=0; //used to identify when we have received a string from the ORP circuit

//define pH variables
char ph_data[20]; //20 byte character array to hold incoming pH
char ph_computerdata[20]; //20 byte character array to hold incoming data from a pc
byte pc_debug=0; //if you would like to debug the pH Circuit through the serial monitor(pc/mac/other), if not set this to 0.
byte ph_received_from_computer=0; //we need to know how many characters have been received from computer
byte ph_received_from_sensor=0; //we need to know how many characters have been received from pH sensor
byte ph_startup=0; //used to make sure the arduino takes over control of the pH Circuit properly.
float ph=0; //used to hold a floating point number that is the pH.
byte ph_string_received=0; //used to identify when we have received a string from the pH circuit.

//LCD set up
LiquidCrystal lcd(8, 9, 4, 5, 6, 7); // select the pins used on the LCD panel

void setup(){
 Serial.begin(38400); //enable the hardware serial port
 orpserial.begin(38400); //enable the software serial port
 phserial.begin(38400); //enable the software serial port
 sensors.begin(); //start up temp probe library
 sensors.setResolution(insideThermometer, 10); // set the temp probe resolution to 10 bit
 lcd.begin(16, 2); // start the lcd library
 SD.begin(16);
 pinMode(10, OUTPUT);
}

void loop() {
 sensors.requestTemperatures(); //read Temp probe
 printTemperature(insideThermometer);
 orpserial.listen();
 delay(100);
 if(orpserial.available() > 0){ //if we see that the ORP Circuit has sent a character.
 orp_received_from_sensor=orpserial.readBytesUntil(13,orp_data,20); //we read the data sent from ORP Circuit until we see a <CR>. We also count how many character have been recived.
 orp_data[orp_received_from_sensor]=0; //we add a 0 to the spot in the array just after the last character we received. This will stop us from transmitting incorrect data that may have been left in the buffer.
 orp_string_received=1; //a flag used when the arduino is controlling the ORP Circuit to let us know that a complete string has been received.
 }
 phserial.listen();
 delay(100);
 if(phserial.available() > 0){ //if we see that the pH Circuit has sent a character.
 ph_received_from_sensor=phserial.readBytesUntil(13,ph_data,20); //we read the data sent from ph Circuit until we see a <CR>. We also count how many character have been recived.
 ph_data[ph_received_from_sensor]=0; //we add a 0 to the spot in the array just after the last character we received. This will stop us from transmitting incorrect data that may have been left in the buffer.
 ph_string_received=1; //a flag used when the arduino is controlling the pH Circuit to let us know
that a complete string has been received.

```c
74 } }  
75 void printTemperature(DeviceAddress deviceAddress) {  
76     int decPlaces = 0; // set temp decimal places to 0  
77     float tempC = sensors.getTempC(deviceAddress);  
78     if (tempC == -127.00) {  
79         lcd.print("Error getting temperature");  
80     } else {  
81         lcd.setCursor(0,0); //set position on lcd for pH  
82         lcd.print("pH:");  
83         lcd.print(ph, 1);  //send pH to lcd  
84         lcd.setCursor(7,0); //set position on lcd for ORP  
85         lcd.print("ORP:");  
86         lcd.print(ORP, 0); //send ORP to lcd  
87         lcd.setCursor(0,1); //set position on lcd for Temp  
88         lcd.print("Temp:");  
89         lcd.print("C ");  
90         lcd.print(tempC,decPlaces); //display Temp in celsius  
91         lcd.print(" F ");  
92         lcd.print(DallasTemperature::toFahrenheit(tempC),decPlaces); //convert celsius to farenheit  
93         delay(10000); //we will take a reading every 10000ms  
94 
95         orpserial.print("R\r"); //send it the command to take a single reading.  
96         if(orp_string_received==1){  //did we get data back from the ORP Circuit?  
97             ORP=atof(orp_data); //convert orp_data string to ORP float  
98             if(ORP>800){Serial.println("high\r");} //This is the proof that it has been converted into a string.  
99             if(ORP<800){Serial.println("low\r");} //This is the proof that it has been converted into a string.  
100             orp_string_received=0;} //reset the string received flag.  
101 
102         phserial.print("R\r"); //send it the command to take a single reading.  
103         if(ph_string_received==1){  //did we get data back from the ph Circuit?  
104             ph=atof(ph_data); //convert ph_data string to ph float  
105             if(ph>=7.5){Serial.println("high\r");} //This is the proof that it has been converted into a string.  
106             if(ph<7.5){Serial.println("low\r");} //This is the proof that it has been converted into a string.  
107             ph_string_received=0;} //reset the string received flag.  
108 
109         long currentTime = millis(); // Get the current time in ms (time since program start) 
```
File dataFile = SD.open("datalog.txt", FILE_WRITE); //open the file
if (dataFile) { // if the file is available, write to it:
 dataFile.println(currentTime); // logs the time in milliseconds since the program started
 dataFile.print(","); //inserts a comma
 dataFile.println(ph); //logs the pH
 dataFile.print(","); //inserts a comma
 dataFile.println(ORP); //logs the ORP
 dataFile.print(","); //inserts a comma
 dataFile.println(tempC); //logs the temperature in degrees C
 dataFile.print("\r"); //inserts a return character
 dataFile.close();