library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity final is
 Port (button : in STD_LOGIC;
 CLK : in STD_LOGIC;
 RST : in STD_LOGIC;
 anode : out STD_LOGIC_VECTOR (3 downto 0);
 cathode : out STD_LOGIC_VECTOR (7 downto 0));
end final;

architecture Behavioral of final is

component clocks
 Port (CLK : in STD_LOGIC;
 clock_480 : out STD_LOGIC;
 clock_centi : out STD_LOGIC);
end component;

component sevenseg
 Port (button : in STD_LOGIC;
 RST : in STD_LOGIC;
 CLK : in STD_LOGIC;
 clock_480 : in STD_LOGIC;
 clock_centi : in STD_LOGIC;
 anode : out STD_LOGIC_VECTOR (3 downto 0);
 cathode : out STD_LOGIC_VECTOR (7 downto 0));
end component;

signal clk1, clk2 : STD_LOGIC;

begin

 comp0 : clocks port map (CLK => CLK, clock_480 => clk1, clock_centi => clk2);

end

comp1 : sevenseg port map (CLK => CLK, clock_480 => clk1, clock_centi => clk2, button => button,
RST => RST, anode => anode, cathode => cathode);

end Behavioral;