Features
- Operating voltage
 - 2.4V~5V for the HT12A
 - 2.4V~12V for the HT12E
- Low power and high noise immunity CMOS technology
- Low standby current: 0.1μA (typ.) at VDD=5V
- HT12A with a 38kHz carrier for infrared transmission medium
- Minimum transmission word
 - Four words for the HT12E
 - One word for the HT12A
- Built-in oscillator needs only 5% resistor
- Data code has positive polarity
- Minimal external components
- HT12A/E: 18-pin DIP/20-pin SOP package

Applications
- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers
- Car alarm system
- Security system
- Cordless telephones
- Other remote control systems

General Description
The 212 encoders are a series of CMOS LSIs for remote control system applications. They are capable of encoding information which consists of N address bits and 12−N data bits. Each address/data input can be set to one of the two logic states. The programmed addresses/data are transmitted together with the header bits via an RF or an infrared transmission medium upon receipt of a trigger signal. The capability to select a TE trigger on the HT12E or a DATA trigger on the HT12A further enhances the application flexibility of the 212 series of encoders. The HT12A additionally provides a 38kHz carrier for infrared systems.

Selection Table

<table>
<thead>
<tr>
<th>Function Address</th>
<th>Address/ Data No.</th>
<th>Data No.</th>
<th>Oscillator</th>
<th>Trigger</th>
<th>Package</th>
<th>Carrier Output</th>
<th>Negative Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT12A</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>D8−D11</td>
<td>18 DIP 20 SOP</td>
<td>38kHz</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>455kHz resonator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT12E</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>TE</td>
<td>18 DIP 20 SOP</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Address/Data represents pins that can be address or data according to the decoder requirement.
Block Diagram

TE trigger

HT12E

```
+3 Divider

12 Transmission Gate Circuit

Binary Detector

Oscillator

OSC2  OSC1

TE

A0

A7

AD8 ——— AD11

VDD  VSS

Data Select & Buffer

Sync. Circuit

DOUT
```

DATA trigger

HT12A

```
+576 Divider

12 Transmission Gate Circuit

Binary Detector

Oscillator

X2  X1

L/MB

A0

A7

D8 ——— D11

VDD  VSS

Data Select & Buffer

Sync. Circuit

DOUT
```

Note: The address data pins are available in various combinations (refer to the address/data table).
Pin Assignment

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Internal Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0~A7</td>
<td>I</td>
<td>CMOS IN Pull-high (HT12A)</td>
<td>Input pins for address A0~A7 setting These pins can be externally set to VSS or left open</td>
</tr>
<tr>
<td>AD8~AD11</td>
<td>I</td>
<td>NMOS TRANSMISSION GATE PROTECTION DIODE (HT12E)</td>
<td>Input pins for address/data AD8~AD11 setting These pins can be externally set to VSS or left open</td>
</tr>
<tr>
<td>D8~D11</td>
<td>I</td>
<td>CMOS IN Pull-high</td>
<td>Input pins for data D8~D11 setting and transmission enable, active low These pins should be externally set to VSS or left open (see Note)</td>
</tr>
<tr>
<td>DOUT</td>
<td>O</td>
<td>CMOS OUT</td>
<td>Encoder data serial transmission output</td>
</tr>
<tr>
<td>L/MB</td>
<td>I</td>
<td>CMOS IN Pull-high</td>
<td>Latch/Momentary transmission format selection pin: Latch: Floating or VDD Momentary: VSS</td>
</tr>
</tbody>
</table>
Pin Name | I/O | Internal Connection | Description
--- | --- | --- | ---
TE | I | CMOS IN Pull-high | Transmission enable, active low (see Note)
OSC1 | I | OSCILLATOR 1 | Oscillator input pin
OSC2 | O | OSCILLATOR 1 | Oscillator output pin
X1 | I | OSCILLATOR 2 | 455kHz resonator oscillator input
X2 | O | OSCILLATOR 2 | 455kHz resonator oscillator output
VSS | I | — | Negative power supply, grounds
VDD | I | — | Positive power supply

Note: D8~D11 are all data input and transmission enable pins of the HT12A.
TE is a transmission enable pin of the HT12E.

Approximate internal connections

![Internal Connections Diagram]

Absolute Maximum Ratings

Supply Voltage (HT12A)−0.3V to 5.5V
Supply Voltage (HT12E)−0.3V to 13V
Input VoltageVSS−0.3 to VDD+0.3V
Storage Temperature−50°C to 125°C

Operating Temperature−20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute Maximum Ratings” may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Electrical Characteristics

HT12A \(T_a=25^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V(_D) Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(_D)D</td>
<td>Operating Voltage</td>
<td>—</td>
<td>2.4</td>
<td>3</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>I(_S)TB</td>
<td>Standby Current</td>
<td>3V Oscillator stops</td>
<td>—</td>
<td>0.1</td>
<td>1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>—</td>
<td>0.1</td>
<td>1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>I(_D)D</td>
<td>Operating Current</td>
<td>3V No load f(_O)SC=455kHz</td>
<td>—</td>
<td>200</td>
<td>400</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>—</td>
<td>400</td>
<td>800</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>I(_O)UT</td>
<td>Output Drive Current</td>
<td>5V V(_O)H=0.9V(_D) (Source)</td>
<td>—</td>
<td>-1</td>
<td>-1.6</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_O)L=0.1V(_D) (Sink)</td>
<td>2</td>
<td>3.2</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>V(_H)H</td>
<td>"H" Input Voltage</td>
<td>—</td>
<td>0.8V(_D)</td>
<td>—</td>
<td>V(_D)</td>
<td>V</td>
</tr>
<tr>
<td>V(_I)L</td>
<td>"L" Input Voltage</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0.2V(_D)</td>
<td>V</td>
</tr>
<tr>
<td>R(_D)ATA</td>
<td>D8~D11 Pull-high Resistance</td>
<td>5V V(_D)ATA=0V</td>
<td>—</td>
<td>150</td>
<td>300</td>
<td>k(\Omega)</td>
</tr>
</tbody>
</table>

HT12E \(T_a=25^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V(_D) Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(_D)D</td>
<td>Operating Voltage</td>
<td>—</td>
<td>2.4</td>
<td>5</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>I(_S)TB</td>
<td>Standby Current</td>
<td>3V Oscillator stops</td>
<td>—</td>
<td>0.1</td>
<td>1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12V</td>
<td>—</td>
<td>2</td>
<td>4</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>I(_D)D</td>
<td>Operating Current</td>
<td>3V No load f(_O)SC=3kHz</td>
<td>—</td>
<td>40</td>
<td>80</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12V</td>
<td>—</td>
<td>150</td>
<td>300</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>I(_O)UT</td>
<td>Output Drive Current</td>
<td>5V V(_O)H=0.9V(_D) (Source)</td>
<td>—</td>
<td>-1</td>
<td>-1.6</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_O)L=0.1V(_D) (Sink)</td>
<td>1</td>
<td>1.6</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>V(_H)H</td>
<td>"H" Input Voltage</td>
<td>—</td>
<td>0.8V(_D)</td>
<td>—</td>
<td>V(_D)</td>
<td>V</td>
</tr>
<tr>
<td>V(_I)L</td>
<td>"L" Input Voltage</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0.2V(_D)</td>
<td>V</td>
</tr>
<tr>
<td>f(_O)SC</td>
<td>Oscillator Frequency</td>
<td>5V R(_O)SC=1.1M(\Omega)</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>kHz</td>
</tr>
<tr>
<td>R(_T)E</td>
<td>TE Pull-high Resistance</td>
<td>5V V(_T)E=0V</td>
<td>—</td>
<td>1.5</td>
<td>3</td>
<td>M(\Omega)</td>
</tr>
</tbody>
</table>

5 April 11, 2000
Functional Description

Operation
The 212 series of encoders begin a 4-word transmission cycle upon receipt of a transmission enable (TE for the HT12E or D8~D11 for the HT12A, active low). This cycle will repeat itself as long as the transmission enable (TE or D8~D11) is held low. Once the transmission enable returns high the encoder output completes its final cycle and then stops as shown below.

Transmission timing for the HT12E

Transmission timing for the HT12A (L/MB=Floating or VDD)

Transmission timing for the HT12A (L/MB=VSS)
Information word

If L/MB=1 the device is in the latch mode (for use with the latch type of data decoders). When the transmission enable is removed during a transmission, the DOUT pin outputs a complete word and then stops. On the other hand, if L/MB=0 the device is in the momentary mode (for use with the momentary type of data decoders). When the transmission enable is removed during a transmission, the DOUT outputs a complete word and then adds 7 words all with the "1" data code.

An information word consists of 4 periods as illustrated below.

Composition of information

Address/data waveform

Each programmable address/data pin can be externally set to one of the following two logic states as shown below.

Address/Data bit waveform for the HT12E

Address/Data bit waveform for the HT12A
The address/data bits of the HT12A are transmitted with a 38kHz carrier for infrared remote controller flexibility.

Address/data programming (preset)

The status of each address/data pin can be individually pre-set to logic "high" or "low". If a transmission-enable signal is applied, the encoder scans and transmits the status of the 12 bits of address/data serially in the order A0 to AD11 for the HT12E encoder and A0 to D11 for the HT12A encoder.

During information transmission these bits are transmitted with a preceding synchronization bit. If the trigger signal is not applied, the chip enters the standby mode and consumes a reduced current of less than 1μA for a supply voltage of 5V.

Usual applications preset the address pins with individual security codes using DIP switches or PCB wiring, while the data is selected by push buttons or electronic switches.

The following figure shows an application using the HT12E:

![Diagram of HT12E application](image)

The transmitted information is as shown:

<table>
<thead>
<tr>
<th>Pilot & Sync.</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>AD8</th>
<th>AD9</th>
<th>AD10</th>
<th>AD11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Address/Data sequence

The following provides the address/data sequence table for various models of the 212 series of encoders. The correct device should be selected according to the individual address and data requirements.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Address/Data Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>HT12A</td>
<td>A0 A1 A2 A3 A4 A5 A6 A7 D8 D9 D10 D11</td>
</tr>
<tr>
<td>HT12E</td>
<td>A0 A1 A2 A3 A4 A5 A6 A7 AD8 AD9 AD10 AD11</td>
</tr>
</tbody>
</table>

Transmission enable

For the HT12E encoders, transmission is enabled by applying a low signal to the TE pin. For the HT12A encoders, transmission is enabled by applying a low signal to one of the data pins D8~D11.

Two erroneous HT12E application circuits

The HT12E must follow closely the application circuits provided by Holtek (see the "Application circuits").

- Error: AD8~AD11 pins input voltage > VDD+0.3V
Error: The IC’s power source is activated by pins AD8–AD11

Flowchart

- **HT12A**

 - Power on
 - Standby mode
 - Data enable?
 - Yes: Data with carrier serial output
 - Data still enabled?
 - Yes: Send the last code
 - No: Send “1” 7 times for all of the data codes
 - No: L/MB=GND?
 - Yes: Send the last code
 - No: Transmission enabled?
 - Yes: 4 data words transmitted
 - No: Transmission still enabled?
 - Yes: 4 data words transmitted continuously
 - No: Transmission disabled?

- **HT12E**

 - Power on
 - Standby mode
 - Transmission enabled?
 - Yes: 4 data words transmitted
 - No: Transmission still enabled?
 - Yes: 4 data words transmitted continuously
 - No: Transmission disabled?

Note: D8–D11 are transmission enables of the HT12A.
TE is the transmission enable of the HT12E.
Oscillator frequency vs supply voltage

The recommended oscillator frequency is f_{OSCD} (decoder) $\cong 50 f_{\text{OSCE}}$ (HT12E encoder) $\cong \frac{1}{3} f_{\text{OSCE}}$ (HT12A encoder)
Application Circuits

Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.)
Typical RF transmitter: JR-220 (JUWA CORP.)