	Thermal Imaging Camera

Design Report
	[image: image28.png]

	
	 www.digilentdesigncontest.com

	Thermal Imaging Camera Design Report
	[image: image27.png]

Thermal Imaging Camera

Orlando Dorel Curuti

orlando.curuti@student.upt.ro

Bogdan Flavius Komlosi

bogdan.komlosi@student.upt.ro

Brandon Mitar

brandon.mitar@student.upt.ro

Submitted for the 2016 Digilent Design Contest Europe

07/05/2016

Advisors: Prof. Dr. Ing. Aurel-Stefan GONTEAN
 Ing. Marius BONCEA
 Prof. Dr. Ing. Octavian STEFAN
Universitatea Politehnica Timisoara

Timisoara, Timis

[image: image1.jpg]
[image: image2.png]
[image: image3.jpg]
Product Features:

Autoranging temperature view with bargraph and numeric display
Presetable opacity between the visible spectrum and the infrared spectrum
 image
An Intuitive GUI with buttons for changing the mode
High resolution autofocus for the visible spectrum camera
Ethernet Conectivity between the Raspberry Pi and the Zybo dev board
 Hobby Thermal Imaging Camera Flyer
Table of Contents

3Hobby Thermal Imaging Camera Flyer

4Acknowledgements

4Introduction

4Abstract

4Objectives

4Features-in-Brief

5Project Summary

5Design Status

6Background-Analysis of existing Thermal imaging camera designs

7Why This Project?

8Reference Material

8What is Longwave radiation? Longwave and Shortwave radiation.

9Infrared (IR)

9Regions within the infrared

10TCP Socket

11Socket concept

12Design

12Features and Specifications

12Design Overview

14Detailed Design Description

141.
The Zybo/ZedBoard development board setup and configuration

14Loading the Linux distribution on the SD card and basic configuration

182.
FLIR Lepton sensor setup and interfacing.

182.1 The Interface setup and configuration

202.2 The communication between the interface and the FLIR Lepton sensor

232.3 The Socket – Sensor data transmission over LAN to the development board

253.
Visible camera block

25Discussion

25Problems Encountered

25Linux distribution problem

25The SPI communication protocol-What have we tried and where are we thinking the solution is ?!?

27Engineering Resources Used

27Marketability

27Community Feedback

27References

29Appendix A: {server.cpp}

35Appendix B: {client.cpp}

40Appendix C: {flir_gradient.h}

45Appendix D: {SPI.h}

Acknowledgements
We would like to thank Prof. Dr. Ing. Aurel-Stefan GONTEAN for providing us with the necessary support to get off the ground with our project. His advice and expertise was priceless. Words are powerless to express our gratitude for his efforts. Also we can’t thank enough the representative of Autoliv Romania Ing. Marius BONCEA (Software team leader for the Night Vision Systems/ Group leader Vision &Night Vision Systems) who integrated us in the company and provided us with the 2 requested cameras (FLIR Lepton LWIR imager and the Visible Camera). We are very grateful for the support , understanding and lessons we have learned from the Autoliv community. A special thank you goes to Prof.Dr. Ing Octavian STEFAN who provided us with expertise in Linux and Computer Networking we could not have succeeded without your help. And last but not least to all the Digilent Design Contest 2016 organizers who provided us with the Development board for the project and accommodated us at Cluj-Napoca. Thank you Mrs Monica IGNAT for your understanding and help with the formalities.
Introduction
Abstract
The Thermal Imaging Camera project is based on the FLIR Lepton long wave infrared sensor which is used for capturing the infrared reflection from the physical objects. The data captured by the FLIR module is combined with a visual spectrum imaging camera using the Digilent Zybo board and displayed on a VGA compatible screen. The two images are overlapped in software and the finite product is a much sharper image that shows the temperature of the objects and their contour due to the Visual spectrum camera.

Objectives

Thermal imaging cameras are expensive, but a low cost version with modest performance has a potential market entry. Thermal imaging cameras are used in surveillance activities by law enforcement, power line maintenance, home inspection, hobby electronics, etc . We found it challenging and interesting at the same time, we are attracted by the offerings of professional thermal imaging cameras, which features we intend to reproduce in this project.

Features-in-Brief

Temperature scale with autoranging feature , Temperature measurement. Improved infrared vision capabilities.
Project Summary

The required products are :
· 1 Digilent Products Zybo or ZedBoard development board with Zynq 7000
· 2. Third party products: FLIR Lepton LWIR imager, 720p visible spectrum camera
· Raspberry Pi 3 Model B
· Powered USB Hub
· Mouse & Keyboard
· Female-Female wires
· Ethernet cable
When it comes to hardware/software resources we have used a
 DMM (Digital Multimeter),
100MHz oscilloscope,
 Vivado Design suite,
 ISE Design Suite,
Virtualization software for Linux virtualization (VirtualBox),
Putty.
The project is based on the Zybo board which stands at the heart of the design. Together with the FLIR Lepton LWIR imager and a 720p visible camera we obtain an overlap of the two video streams. The interfacing of the FLIR Lepton LWIR imager with the Zybo board is implemented by the Raspberry Pi 3 Model B running Raspbian Noobs OS (Linux). The major features we obtained through software are : Temperature measurement and Temperature display in the form of a scale with auto range feature and Improved infrared vision capabilities.(Please refer to the Background -> Analysis of existing Thermal imaging camera designs section)
By using the flexibility of the Zynq 7000 series FPGA’s we have shortened the hardware development time and succeeded in establishing the necessary hardware support on which we have built our software applications. The connected devices (FLIR Lepton and the 720p camera) were immediately transmitting the video stream which provided us with the input for the final software application that overlaps ,with different opacity, the two video streams. There are 3 essential blocks in our design which are described in more detail in the design description part of the report. The first block is represented by the Zynq 7000 development board running Xillinux OS by Xillybus. The second block is represented by the FLIR Lepton LWIR imager sensor together with its Ethernet interface which are connected over the LAN to the Zynq 7000 development board.
The design complexity is medium, the effectiveness of the design is limited. The design did meet the objectives. Any part of the project can be used for other purposes, especially the TCP Socket application code and the algorithm for the overlapping of the two video streams. The software can be adapted very easily, the design is generally useful ,it can be adapted to any platform running a Linux distribution. The design can be used as a prototype for a future product. By building a proper enclosure to fit all the hardware components of the project it can be used in troubleshooting hardware from a thermal imaging point of view and in improving PCB Designs.
Design Status
Implemented in an engineering way, not the ideal solution, but a working one. We have connected to the Zynq 7000 development board the two cameras. The FLIR Lepton sensor is connected to the Ethernet interface although we would have wished it was connected directly to the development boards pmode. We have succeeded in bringing the video stream from the FLIR Lepton LWIR imager to the Zybo board. The design status is “almost done”. We need to adapt the existing prototype code presented in the last project statuts to the current setup. We hope we will succeed in implementing it until the presentation. We are still having some problems with the code and the way the software is handling the two streams of video.
Background-Analysis of existing Thermal imaging camera designs
When looking at similar products on the market our interest was captured by the Fluke IR-Fusion® Technology which is present in professional grade FLUKE equipment. We succeded in obtaining a similar image with our setup. Please refer to the two sets of images provided below.
Full infrared images (Fluke on the left, our project on the right)
[image: image4.jpg] [image: image5.jpg]
AutoBlend™ mode: Blend partially transparent infrared and visible images into a single view for easy problem detection. (Marked with x (Fluke), Marked with a and b our project)
 x) [image: image6.jpg]
a) [image: image7.jpg] b) [image: image8.jpg]
OBSERVATION: The pictures marked with a and b were taken with the prototype software running ONLY on the Raspberry PI 3 with the camera setup as shown in the project picture and flyer
Why This Project?
When doing projectsPCB designs we were interested in seeing where are the hotspots inof our circuit designs, and what can be done to improve the PCB design, like using bigger heatsinks or using active cooling for improving the air flow in the case.. Also when troubleshooting complex electronic circuits we would have wishedwhised to see more, from a thermal point of view.
Why this particular design approach?

From the variety of FPGA boards available we have chosen one with an ARM core on which we can run a Linux distribution and significantly shorten the development time for the project. Having an operating system running on a development board we started working on adapting the OS to our particular needs. We have gained significant experience and knowledge from the Linux world.We are happy we chose this path, the experience acquired will benefit us in the long run.
The interface component in our design is the Raspberry Pi 3 Model B which we are using to transfer over LAN the video frames captured from the FLIR sensor one by one with a TCP socket.The FLIR LWIR (Long Wave InfraRed) imaging sensor communicates with the Raspberry PI 3 Model B using the SPI communication protocol. The information is then packaged by the Raspberry PI 3 and sent over the network to the Zynq 7000 FPGA running Linux. The development board can be either a Zybo or a Zedboard.
[image: image27.png] [image: image9.png]
We have chosen this particular design approach because of the lack of design experience on our part and also the poor documentation on activating the SPI communication protocol on the Zynq 7000 board and integrating it with a Linux distribution. The documentation on activating and integrating peripherals with Linux is little to nonexistent, we have searched the forums for days on end with no success. We will elaborate in the Discussion- Problems encountered section.
Reference Material
The FLIR Lepton is an infrared (long wavelength) camera (LWIR – Longwave Infrared) which is able to detect the infraredthermal radiation from objects. A more practically way to understand how this camera works is the following example: when a metal starts to melt we see that it starts to glow red and if the temperature keep increasing the light will become at high temperatures white. This suggests us that if we increase the temperature, the wavelength of light will be shorter. The human eye can see from about 650nm up to 450nm wavelength. At room temperatures the wavelength of light is far away than what our eye can see (under 12um/12.000nm). In the next paragraph we will discuss the concepts of Longwave, Shortwave and also Infrared.
What is Longwave radiation? Longwave and Shortwave radiation.
Everything that has a temperature gives off electromagnetic radiation (light). The sun is extremely hot and has a lot of energy to give, so it gives off shortwave radiation because shortwave radiation contains higher amounts of energy The earth is much cooler, but still emits radiation. Earth’s radiation is emitted as longwave because longwave radiation contains a smaller amount of energy.

 Figure 2: Athmosferic Window of the wavelengths that enter the athmosphere.
Shortwave radiation (visible light) contains a lot of energy; longwave radiation (infrared light) contains less energy than shortwave radiation (shortwave radiation has a shorter wavelength than longwave radiationradation). Solar energy enters our atmosphere as shortwave radiation in the form of ultraviolet (UV) rays (the ones that give us sunburn) and visible light. The sun emits shortwave radiation because it is extremely hot and has a lot of energy to give off. Once in the Earth’s atmosphere, clouds and the surface absorb the solar energy. The ground heats up and re-emits energy as longwave radiation in the form of infrared rays. Earth emits longwave radiation because Earth is cooler than the sun and has less energy available to give off.
Figure 2 shows the Atmospheric Window of the wavelengths that enter our atmosphere. Our atmosphere is transparent to radio waves, visible light, and some infrared and UV radiation
Infrared (IR)
Infrared (IR) is invisible radiant energy, electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometers (frequency 430 THz) to 1 mm (300 GHz) Infrared energy is emitted or absorbed by molecules when they change their rotational-vibrational movements. Infrared energy excites vibrational modes in a molecule through a change in the dipole moment, making it a useful frequency range for study of these energy states for molecules of the proper symmetry.
Regions within the infrared
In general, objects emit infrared radiation across a spectrum of wavelengths, but sometimes only a limFiiited region of the spectrum is of interest because sensors usually collect radiation only within a specific bandwidth. Thermal infrared radiation also has a maximum emission wavelength, which is inversely proportional to the absolute temperature of object, in accordance with Wien's displacement law
 [image: image11.png]
 Table 1 : Commonly used sub-division scheme table
TCP Socket
[image: image28.png]
Definition:

A socket is the mechanism that most popular operating systems provide to give programs access to the network. It allows messages to be sent and received between applications (unrelated processes) on different networked machines.

Socket concept

Normally, a server runs on a specific computer and has a socket that is bound to a specific port number. The server just waits, listening to the socket for a client to make a connection request.

On the client-side: The client knows the hostname of the machine on which the server is running and the port number on which the server is listening. To make a connection request, the client tries to rendezvous with the server on the server's machine and port. The client also needs to identify itself to the server so it binds to a local port number that it will use during this connection. This is usually assigned by the system.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket bound to the same local port and also has its remote endpoint set to the address and port of the client. It needs a new socket so that it can continue to listen to the original socket for connection requests while tending to the needs of the connected client.

On the client side, if the connection is accepted, a socket is successfully created and the client can use the socket to communicate with the server. The client and server can now communicate by writing to or reading from their sockets.

A socket is one endpoint of a two-way communication link between two programs running on the network. A socket is bound to a port number so that the TCP layer can identify the application that data is destined to be sent to. An endpoint is a combination of an IP address and a port number. Every TCP connection can be uniquely identified by its two endpoints. That way you can have multiple connections between your host and the server.
Design

Features and Specifications
Our thermal camera is based on a long-wave Flir Lepton sensor. This sensor is capable to “capture” the thermal radiation from every object within 12 meters distance and it has a temperature range between -10*C and 80*C. The resolution of the sensor is 80x60 pixels, it appears to be small, but is enough to detect objects and persons.
Design Overview
The project is based on the Zybo board (Marked with 1 in Figure 1b) which stands at the heart of the design. The embedded ARM cores are the ones that do the heavy lifting. They are booting up the Linux distribution (Xillinux) and handle the video processing part. The programmable logic (PL) handles the video interface through the Xillybus implemented VGA adapter, the Xillybus IP core which processes data using a FIFO structure and transmits the data to the PS.We are using a Zynq 7000 device and an embedded Linux distribution because it provides us with a strong foundation for development. Furthermore it cuts the development time and facilitates the implementation of the project.
[image: image15.jpg]

On theTo Digilent Zybo board we have connected through the USB port a visible spectrum camera (Marked with 3 in Figure 1b) which can be any kind of camera that you can buy at your local electronics store. The FLIR Lepton sensor is connected using the SPI communication protocol to a network interface which is represented by a Raspberry PI 3 Model B (Marked with 3 in Figure 1b) running Noobs as an operating system . We transmit the data received by the Raspberry PI 3 Model B through SPI to the Zybo board’s Ethernet port using a TCP sockets. There are two applications which communicate between them one Sever side application on the Raspberry PI 3 Model B and a Client Side application on the Zybo board. The client connects to the server and requests data, the server sends the data.
After having the two streams of video present ,running on the development board, we are using theuse OpenCV to implement the overlapping algorithm. ,The final video stream is generated with the OpenCV application.

Detailed Design Description
1. The Zybo/ZedBoard development board setup and configuration
[image: image16.jpg]
The Zynq 7000 system is running an updated version of the Xillinux by Xillyus Linux distribution (Ubuntu 14.4). The function of the Linux OS is a short and effective one : Provide the necessary development board resources and support to sustain the software development, for integrating the desired application hardware.
As described in the Getting started with Xillinux for Zynq 7000 EPP guide by Xillybus we will follow the procedure to set up the board and load the operating system on the SD card.
Due to the fact that the guide is well made and provides the necessary information to get the Zed/Zybo Board configured and booted up with the OS we will refer to the particular sections and only give you slight hints or insist on the necessary facts.

Loading the Linux distribution on the SD card and basic configuration
The first step is to download the Xillinux Image and the Boot partition kit provided on the website (http://xillybus.com/xillinux) Using Win32 Disk Imager or USB Image tool load the microSD card with the image.. The detailed process is explained in the Xillybus Getting Started guide for Zynq section 3.6 page19.
After the process has been finished you will have on the microSD card 2 partitions one(which will contain the boot files) of 15Mb and another one that is hidden in Windows with the format ext4 (linux specific) that contains the linux image.
For the moment on the 15MB partition (boot partition) you will find just a uimage file. There are just three files missing in the boot partition, one of which needs to be generated with Xilinx’ tools, and two that are copied from the boot partition kit folder named “bootfiles”.
The second step is to generate the missing boot file ,the .bit file using Vivado. Here we will have to use the previously downloaded zip file for zedboard xillinx-eval-zedboard-1.3c and for zybo xillinx-eval-zybo-1.3c.
The procedure is as follows:
-> Create a new folder and unzip xillinx-eval-zedboard-1.3c or xillinx-eval-zybo-1.3c

-> open Vivado-> Tools-> Run Tcl script
->go in the newly created folder-> verilog folder and select to open xilidemo-vivado.tcl (You can also chose the VHDL file)

After the project initialization click on the Generate Bitstream (on the left in the Flow Navigator->Program and Debug)and wait for the process to finish.

When finished the generated bitstream will be found in the folder impl_1 on the path Your_NewFolder\xillinux-eval-zedboard-1.3c\verilog\vivado\xillydemo.runs\impl_1
Described in more detail in section 3.5 -> 3.5.2 Using Vivado of the Xillybus Getting Started guide for Zynq 7000.
Next we will copy all the boot files to the 15Mb partition on the microSD card.

The uImage file is already present on the target partition we will add the bitstream file (xillydemo.bit) from the previous step and also the two files contained in the bootfiles directory (\xillinux-eval-zedboard-1.3c\bootfiles) the boottheboot.bin and the devicetree.dtb.
Section 4.1 of the Getting Started guide for Zynq deals with the prooper set up of the specific board jumpers.

After the first bootup of your Linux distribution we recommend a resize of the working partition. Because we have written the image on the SD card the partition downsized to 1.6GB and there is no reason to not use the full space.
The commands used are :" df -h" to show the available partitions ,"fdisk /dev/mmcblk0" after executing the fdisk command press 'd' for deleting the partition then '2' for selecting the partition to be deleted .After that press 'n' to create a new partition and you can use the default settings pressing 4 times the enter key. After this press 'w' to save the changes then use the command"shutdown -r now" to rebot .After rebooting type in the command "resize2fdisk /dev/mmcblk0p2" and there you go your partition size is at full lenght.

More details can be found in the Getting Started guide for Zynq (Zedboard) section 4.4

After the resize process we will perform an update and upgrade to the Linux Distribution so we recommend you input the following commands in an opened terminal window and follow the next hints to get you on the right track.

Open the Terminal window: type the commands "sudo apt-get update" ,"sudo apt-get upgrade".

After the upgrade follow the steps:

1. During start-up you will press "Ctrl+alt+f1" to be able to use the root user ,create a new one and change the root password

2.Add a user using the command "adduser"
3. Change the root password using the command "sudo passwd root"

Installing OpenCV
[image: image17.png]
The next step in the process is to install the OpenCV software on the Zybo board and all the required packages. We will provide you with the commands wich you can directly input in the terminal window.
Required packages

· GCC 4.4.x or later

· CMake 2.6 or higher

· Git

· GTK+2.x or higher, including headers (libgtk2.0-dev)

· pkg-config

· Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)

· ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev

· [optional] libtbb2 libtbb-dev

· [optional] libdc1394 2.x

· [optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev, libdc1394-22-dev

Commands to install the required packages:
[compiler] sudo apt-get install build-essential

[required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

[optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

After the dependencies have been installed we have to go to the following website to download the archive containing the OpenCV Library https://sourceforge.net/projects/opencvlibrary/
Building OpenCV from Source Using CMake, Using the Command Line

1. Create a temporary directory, which we denote as <cmake_binary_dir>, where you want to put the generated Makefiles, project files as well the object files and output binaries.Enter the <cmake_binary_dir> and type

 cmake [<some optional parameters>] <path to the OpenCV source directory>
For example:

cd ~/opencv
mkdir release
cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
Enter the created temporary directory (<cmake_binary_dir>) and proceed with:

 make

 sudo make install

2. FLIR Lepton sensor setup and interfacing.
The FLIR Lepton is transmitting data over SPI through the network interface (Raspberry Pi 3 Model B) to the Ethernet port of the Zybo board.When the data reaches the development board the FLIR Lepton driver interprets it and generates the video stream.

 [image: image18.jpg]
2.1 The Interface setup and configuration
Install the Noobs bootloader on the Raspberry PI 3 Model B and then install an OS on the device, we have chosen Raspbian on our setup.
First of all you’ll have to download the Noobs utility from the raspberry pi website, unzip the archive and copy the content on the SD card. The SD card has to be formatted before the installation.
http://www.raspberrypi.org/downloads
After booting you will be prompted to select the operating system, in our case Raspbian and wait for the setup to finish the installation.
[image: image19.png]
 After the installation access during boot time the Configuration menu -> Advanced Options ->Select SPI and then reboot.
[image: image20.jpg]
Always keep the Raspian OS up to date. Install OpenCV on the Raspberry Pi 3 the procedure is the same as installing it on the Zynq 7000 development board.

After the procedure is completed we can run the C++ application on the Ethernet interface ,Raspberry PI 3 , that provides the Zybo Zynq 7000 development board with the IR video stream.
2.2 The communication between the interface and the FLIR Lepton sensor
The block diagram of the FLIR Lepton sensor architecture is presented in Figure 4 below.

[image: image21.png]
The lens assembly focuses infrared radiation from the scene onto an 80x60 array of thermal detectors with 17-micron pitch. Each detector element is a vanadium-oxide (VOx) microbolometer whose temperature fluctuates in response to incident flux. The change in temperature causes a proportional change in each microbolometer’s resistance. VOx provides a high temperature coefficient of resistance (TCR) and low 1/f noise, resulting in excellent thermal sensitivity and stable uniformity. The microbolometer array is grown monolithically on top of a readout integrated circuit (ROIC) to comprise the complete focal plane array (FPA). Once per frame, the ROIC senses the resistance of each detector by applying a bias voltage and integrating the resulting current for a finite period of time called the integration period. The serial stream from the FPA is received by a system on a chip (SoC) device, which provides signal processing and output formatting.
Power States

 Lepton currently provides five power states. As depicted in the state diagram shown in Figure 5, most of the transitions among the power states are the result of explicit action from the host. The automatic transition to and from the overtemp state is an exception. In the figure, transitions that require specific host-side action are shown in bold. Automatic transitions are not bolded.

 [image: image22.jpg]
The communication between the FLIR Lepton LWIR imager and our Ethernet interface is done through SPI and according to the FLIR documentation the VoSPI (Video over SPI) Protocol is used.
[image: image23.jpg]
The MOSI (Master Out/Slave In) signal is not currently employed and should be grounded. Implementations are restricted to a single master and single slave. The Lepton uses SPI Mode 3 (CPOL=1, CPHA=1); SCK is HIGH when idle. Data is set up by the Lepton on the falling edge of SCK and should be sampled by the host controller on the rising edge. See Figure 6. Data is transferred most-significant byte first and in big-endian order. Figure 7 provides an example of the transmission of the value 0x8C08.
[image: image24.jpg]
The maximum clock rate is 20 MHz. The minimum clock rate is a function of the number of bits of data per frame that need to be retrieved. As described in the sections that follow, the number of bits of data varies depending upon user settings (video format mode, telemetry mode). For default conditions (Raw14 mode, telemetry disabled), there are 60 video packets per frame, each 1312 bits long, at approximately 25.9 frames per second. Therefore, the minimum rate is on the order of 2 MHz.

VoSPI Protocol

VoSPI is built on a collection of object types as defined hierarchically below.

 ■ VoSPI Packet: The Lepton VoSPI protocol is based on a single standardized VoSPI packet, the minimum “transaction” between master and slave. Each video packet contains data for a single video line or telemetry line. In addition to video packets, the VoSPI protocol includes discard packets that are provided when no video packets are available.

 ■ VoSPI Frame: A VoSPI frame is defined as a continuous sequence of VoSPI packets consisting of a full frame's worth of pixel data.

 ■ VoSPI Stream: A VoSPI stream is defined as a continuous sequence of VoSPI frames.

For a more detailed description please refer to the FLIR_Lepton_Data_Brief.pdf
2.3 The Socket – Sensor data transmission over LAN to the development board

[image: image25.png]
The software was designed to be adapted easily for every platform. The single problem is that the project requires a Raspberry Pi 3 connected to the network or at least to be bridged to another Linux device through LAN. The Raspberry Pi 3 is more than enough to be used as a “SPI to LAN adapter”, but also is very flexible. Once the Raspberry is configured and connected to the network we can transmit the data everywhere over WAN. We have two software applications which communicate over the network.One is running on the server(Raspberry PI 3) and the other on the client (Zybo board).The client software that receives the data from the server requires a few libraries to be compiled and executed on the target Linux machine . A good way to transmit data over LAN was to use the Socket and TCP protocol because is a “safer” way and with a frame of 4800 bytes at around 8.6 FPS (around 45 KB/s) the network speed is not an issue.
The “Server” contains the SPI driver, camera driver and is acting as a Socket host. To collect data from the sensor and send it over LAN we are following the next steps.

 We initialize the software: open SPI port, define the variables and we insert the details for the socket, in this case the socket requires just the port number
1. To open and bind a socket, so a client will be able to connect to server.

2. After initializing the socket we are waiting for a client and accept it if it connects.

3. Then we collect the data from sensor and we split it into 4 smaller buffers with 1200 bytes each. The Socket is limited at around 1500 bytes/packet so if we send 4 packets with 1200 bytes there will not be a problem at all.

4. To send all buffers we have a “for” loop which is sending 15 rows of image pixels at a time. To prevent freezes or errors we check if all the packets were sent, else the program will close. If everything is working fine, then the while loop is still true.

The single library which the “Client” requires is the OpenCV. To collect the data from sensor over LAN, to process the image and to display it we have to:

1. Define all required variables for the socket and OpenCV, as before

2. Connect to a certain server, this time are necessary 2 parameters: server ip and portnumber
3. Check if the server has accepted the client and the connection has been established.

4. Get a frame from web camera.

5. Receive data from the server. Here also is used a “for” loop to switch and fill the buffers.
6. Transform these 4 received buffers in OpenCV matrix.

7. Resize the 80x60 received image to 640x480 pixels.

8. Overlay the image from camera and FLIR Lepton sensor, adjusting the opacity for each image and then summing them.

9. To close the software we check if a key was pressed and then “break” the while loop.

In the close future we will implement the function which will be able to measure the temperature. The problem with measuring temperature is that the sensor is not a linear one and the values which it gives for the same temperature differs from one sensor to another. To measure the temperature we need to make a table checking what value is giving the sensor for a certain temperature. After that we will use the linear approximation method to measure intermediary temperatures.
3. Visible camera block
This block provides the visible part of the image stream to the development board with Zynq 7000.It is connected through a USB Powered Hub port to the FPGA development board.

 [image: image26.png]
Once the Linux distribution is up to date and running just by connecting the visible spectrum camera to the USB port of the Zynq 7000 development board we have confirmation of the device being recognized and that it is working properly. In the Settings menu –> Additional drivers we can see that the visible spectrum camera is connected and recognized.
Discussion

Problems Encountered
Linux distribution problem
We have decided to use Xillinux from Xillybus, wich is a Linux distribution based on Ubuntu. The problems that we had were few but crucial for example when trying to update the sources and also the distribution ,it will not update, secondly the distribution is not supported anymore. Just recently we have succeeded in updating the Linux distribution on the Zybo board to Ubuntu 14.04. We strongly recommend another Linux distribution like Arch Linux but , if you are new to Linux and the command line, better get Linaro.

The SPI communication protocol-What have we tried and where are we thinking the solution is ?!?
Being new to the Linux world and also to the way a Zynq 7000 device initializes and loads the operating system we have invested a considerable time in investigating these aspects. Also we had a device which works using the SPI communication protocol, the FLIR Lepton, this device is not a plug and play device, therefore we have searched from the start in two places to find a way to make the Zynq 7000 system running Linux recognize the FLIR Lepton sensor. The first place was in the standard distribution of Xillinux, we were looking for the spidev drivers. We finally found the presence of the spidev drivers inside the operating system. At the same time we generated a few bitstreams with the SPI1 (MIO10 – MIO15) enabled in Vivado PS Configuration.

The days have passed and our knowledge of the Linux world and the way the ZedBoard works expanded. We understood that the bitstream was not the only key file, basically all the files in the 15MB partition needed to be altered.
Next was the devicetree files, we have made the necessary settings together with a new kernel compile for Arch Linux but still nothing. After many search engine results and documents read we have understood that the boot.bin file contains a bitstream in its composition and that we should not use the given boot.bin but generate a new one, according to our design. After reading through Adam Taylor’s blog posts and reading some Xilinx documentation we have come to the conclusion that we need to regenerate the boot.bin using the Xilinx SDK and create a small application which initializes the SPI communication protocol and sets its frequency which is necessary to our project, around 10 to 12 Mhz, this application has to be developed somehow in the Linux way of operation. (kernel space, user space application)
We received weak to no response when we posted in the Xilinx forum our question regarding the SPI communication protocol activation. The comments were not satisfying to neutral. The feedback did not influence the development of the project , the answers obtained were already found by us or added little to no weight to the development of the project. We expected more from the forums. We got some help on the IRC(Internet Relay Chat) room ##FPGA on freenode but the responders also complained regarding the forums(They are getting stuck in their projects for weeks - not acceptable for the expansion of the FPGA world. Some questions are being answered promptly, others are not even being touched.).We suppose there is a lack of developers in this area of embedded Linux on FPGA’s with Zynq 7000, and that FPGA ‘ s are pretty complex, we would like to see a stimulation of the developer community.

We are very excited about these devices and their capabilities but we hope for better support in the public forums and documentation from the community and developers, also more books from Digilent and more manuals from Xilinx, more trainings , more labs, an embedded Linux section, video tutorials (Not just theoretical concepts).These FPGA ‘s are incredible devices but if the community of developers is not very active it is very hard for new comers to complete projects and get the motivation necessary to initiate the learning curve.

The problem is pretty complex and required more engineering resources than expected. So we quickly looked for an alternative to the challenge. The alternative was to use the Ethernet capabilities of the Zynq 7000 board together with a Raspberry PI 3 Model B Ethernet interface. The software technology used was a TCP socket between the two devices running Linux.
The project design is completed using the Ethernet interface connected between the FLIR Lepton sensor and the Zynq 7000 FPGA development Board. We wished we had more help from the forums, more documentation, more time and more experience to make a truly standalone version of the project, without the Ethernet interface.
Engineering Resources Used
The engineering human resources depend on the experience of the team that is working on the project. We have worked an estimated 190 to 220 hours or more to bring the project in its current state. We are only half engineers with little experience in the field, we started almost from zero.

Marketability

If the technologies for developing higher resolution infrared imaging sensors will evolve and the pricing for a decent resolution sensor of at least 320x480 pixels will decrease the marketability opportunity for a Thermal Imaging Camera with a Zynq 7000 FPGA becomes feasible. Paired with a decent 720p visible camera we can achieve a low cost version of the professional grade FLIR or FLUKE Thermal Imaging solutions that today could set you back as much as 30.000 USD. Our sensor resolution is a modest 80x60 pixels and it costs 250 USD together with the breakout board, the sensor module alone has an estimated pricing of 170 to 180 USD Retail so it is certainly accessible.
Estimated production pricing:

The FLIR Lepton sensor module costs around 150 to 170 USD/unit ,the visible camera with a resolution of 720p and an estimated cost of 50 USD/unit the custom PCB development together with an Zynq 7000 FPGA (XC7Z010-1CLG225C costs 60USD at Digi-Key) will have an estimated cost of 250 USD/unit. The software and enclosure will set us back another 250 USD/unit. So roughly we would estimate around 700-900 USD/unit to manufacture and market the product.

Big companies will not be interested in our product because they already have a significant market share and many innovations are present in their marketed thermal imaging products. Our product is aimed at the hobbyist, technician and people that use the product occasionally, students in particular fields like electronics.
It is a low end budget oriented product for the pricewise driven consumers with decent capability.

We would like to make our idea an actual low price, accessible, product but we wish that the infrared sensor would have had a better resolution for the money.
Community Feedback
After posting our project on Instructbles in its Demo state we received no feedback except from one moderator who thanked us for posting the instructable. 21 users have marked our project as fauvorite, we expect more interest now that we posted our project in its final state.
References
Xillybus Getting Started with Zynq 7000

http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
Instalation in Linux of OpenCV Library 2.4.12

http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html#getting-the-latest-stable-opencv-version
Flir lepton data brief & Software interface description document

https://cdn.sparkfun.com/datasheets/Sensors/Infrared/FLIR_Lepton_Data_Brief.pdf
http://www.flir.com/cores/content/?id=66257
Long wave and shortwave

https://climate.ncsu.edu/edu/k12/.LWSW
Infrared

https://en.wikipedia.org/wiki/Infrared
TCP Socket
http://www.cs.rutgers.edu/~pxk/rutgers/notes/sockets/
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://www.cs.bgu.ac.il/~spl131/wiki.files/tcp_sockets.JPG
Fluke IR-Fusion® Technology
http://en-us.fluke.com/products/infrared-cameras/fluke-ir-fusion-technology.html
Ethernet interface setup
https://www.raspberrypi.org/documentation/installation/noobs.md
Appendix A: {server.cpp}
/*

Software created for Digilent Contest 2016

Project Name: Thermovision Camera

Library used: Socket, OpenCV

Revision: 2.2

Status: Not ready yet

Server.cpp

*/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <sys/wait.h>

#include <signal.h>

#include "SPI.h"

#define
SOCKET_MAXDATASIZE

4800

#define
SOCKET_PORT

7251

#define SOCKET_BACKLOG

10

#define PACKET_SIZE 164

#define PACKET_SIZE_UINT16 (PACKET_SIZE/2)

#define PACKETS_PER_FRAME 60

#define FRAME_SIZE_UINT16 (PACKET_SIZE_UINT16*PACKETS_PER_FRAME)

int main(int argc, char *argv[])

{

//Socket stuffs

 int socket_sockfd;

int socket_newsockfd;

int socket_port;

int socket_data;

int socket_binding;

//Socket buffers; max. data length which can be sent at once is around 1500 bytes, so 1200 will work just fine

uint8_t socket_buffer_a[SOCKET_MAXDATASIZE/4];

uint8_t socket_buffer_b[SOCKET_MAXDATASIZE/4];

uint8_t socket_buffer_c[SOCKET_MAXDATASIZE/4];

uint8_t socket_buffer_d[SOCKET_MAXDATASIZE/4];

socklen_t socket_clientlength;

struct sockaddr_in server_address, client_address;

//Flir Lepton Stuffs

uint8_t result[PACKET_SIZE*PACKETS_PER_FRAME];

uint16_t *frameBuffer;

int transformed_buffer[80][60];

printf("\n\n");

//If no arguments are introduced set the "default" host and port.

if (argc < 3) {

printf("USAGE: port\nInitializing connection with default parameters\n PORT: 7521\n\n");

socket_port = 7521;

} else {

//Convert to int the arg[2] (the port)

socket_port = atoi(argv[2]);

}

//Create socket

socket_sockfd = socket(AF_INET, SOCK_STREAM, 0);

//Check if the socket can be opened

if (socket_sockfd < 0) {printf("ERROR: The socket cannot be opened\nExiting...\n\n"); exit(1);}

//Set all arguments to "0"

bzero((char *) &server_address, sizeof(server_address));

//Set the arguments for server

server_address.sin_family = AF_INET;

 server_address.sin_addr.s_addr = INADDR_ANY;

server_address.sin_port = htons(socket_port);

memset(&(server_address.sin_zero), '\0', 8);

//Create and the the bind

socket_binding = bind(socket_sockfd, (struct sockaddr *) &server_address, sizeof(server_address));

if (socket_binding < 0) {printf("ERROR: Cannot bind the socket\nExiting...\n\n");exit(1);}

//Init the connection and accept the client

listen(socket_sockfd, SOCKET_BACKLOG);

//Accept the client

socket_clientlength = sizeof(client_address);

socket_newsockfd = accept(socket_sockfd, (struct sockaddr *) &client_address, &socket_clientlength);

if (socket_newsockfd < 0) {printf("ERROR: Client not accepted\nExiting...\n\n");exit(1);}

SpiOpenPort(0);

//Acquire data from Lepton sensor

 //int frame_counter = 0; //Used for debbuging

while(1){

//Here is the sensor driver from sparkfun

int resets = 0;

for(int j=0;j<PACKETS_PER_FRAME;j++) {

read(spi_cs0_fd, result+sizeof(uint8_t)*PACKET_SIZE*j, sizeof(uint8_t)*PACKET_SIZE);

int packetNumber = result[j*PACKET_SIZE+1];

if(packetNumber != j) {

j = -1;

resets += 1;

usleep(1000);

if(resets == 750) {

SpiClosePort(0);

usleep(750000);

SpiOpenPort(0);

}

}

}

frameBuffer = (uint16_t *)result;

int row, column;

uint16_t value;

uint16_t minValue = 65535;

uint16_t maxValue = 0;

uint16_t centerValue = 0;

for(int i=0;i<FRAME_SIZE_UINT16;i++) {

if(i % PACKET_SIZE_UINT16 < 2) {

continue;

}

//Flip the MSB and LSB at the last second

int temp = result[i*2];

result[i*2] = result[i*2+1];

result[i*2+1] = temp;

value = frameBuffer[i];

if(value > maxValue) {

maxValue = value;

}

if(value < minValue) {

minValue = value;

}

column = i % PACKET_SIZE_UINT16 - 2;

row = i / PACKET_SIZE_UINT16 ;

if (column == 80 && row == 240) {

centerValue = value;

}

}

float diff = maxValue - minValue;

float scale = 255/diff;

int z = 0;

for(int i=0;i<FRAME_SIZE_UINT16;i++) {

if(i % PACKET_SIZE_UINT16 < 2) {

continue;

}

value = (frameBuffer[i] - minValue) * scale;

column = (i % PACKET_SIZE_UINT16) - 2;

row = i / PACKET_SIZE_UINT16;

//We fill the "transformed buffer" with a color value between 0 and 255

//The framebuffer contain a 16bit word and we need to "transform" it in 8bit word

//The easiest way was to create a matrix, and of course was possible fill directly the socket buffers, but is better to have another buffer before to avoid any problems

transformed_buffer[column][row] = value;

}

//-------------------END OF SENSOR DRIVER-----------------------

//Fill the buffer A with first 15 rows

int socket_buff_cnt = 0;

for (int i = 0; i < 15; i++) {

for (int j = 0; j < 80; j++) {

if (socket_buff_cnt >= 1200) {socket_buff_cnt = 0;}

socket_buffer_a[socket_buff_cnt] = (uint8_t)transformed_buffer[j][i];

if (socket_buff_cnt < 1200) {socket_buff_cnt++;}

}

}

//Fill the buffer B with rows 16-30

socket_buff_cnt = 0;

for (int i = 15; i < 30; i++) {

for (int j = 0; j < 80; j++) {

if (socket_buff_cnt >= 1200) {socket_buff_cnt = 0;}

socket_buffer_b[socket_buff_cnt] = (uint8_t)transformed_buffer[j][i];

if (socket_buff_cnt < 1200) {socket_buff_cnt++;}

}

}

//Fill the buffer C with rows 31-45

socket_buff_cnt = 0;

for (int i = 30; i < 45; i++) {

for (int j = 0; j < 80; j++) {

if (socket_buff_cnt >= 1200) {socket_buff_cnt = 0;}

socket_buffer_c[socket_buff_cnt] = (uint8_t)transformed_buffer[j][i];

if (socket_buff_cnt < 1200) {socket_buff_cnt++;}

}

}

//Fill the buffer D with rows 46-60

socket_buff_cnt = 0;

for (int i = 45; i < 60; i++) {

for (int j = 0; j < 80; j++) {

if (socket_buff_cnt >= 1200) {socket_buff_cnt = 0;}

socket_buffer_d[socket_buff_cnt] = (uint8_t)transformed_buffer[j][i];

if (socket_buff_cnt < 1200) {socket_buff_cnt++;}

}

}

for(int i = 0; i < 4; i++){

switch(i){

case 0:

 //Send buffer A

 socket_data = send(socket_newsockfd, socket_buffer_a, sizeof(socket_buffer_d), 0);

if (socket_data < 0) {printf("ERROR: Data not sent\nExiting...\n\n");exit(1);}

 printf("-----FRAME: %d-----Socket Buffer A Packets: %d\n", frame_counter,socket_data);

break;

case 1:

//Send buffer B

 socket_data = send(socket_newsockfd, socket_buffer_b, sizeof(socket_buffer_b), 0);

if (socket_data < 0) {printf("ERROR: Data not sent\nExiting...\n\n");exit(1);}

 printf("Socket Buffer B Packets: %d\n", socket_data);

break;

case 2:

//Send buffer C

 socket_data = send(socket_newsockfd, socket_buffer_c, sizeof(socket_buffer_c), 0);

if (socket_data < 0) {printf("ERROR: Data not sent\nExiting...\n\n");exit(1);}

 printf("Socket Buffer C Packets: %d\n", socket_data);

break;

case 3:

//Send buffer D

 socket_data = send(socket_newsockfd, socket_buffer_d, sizeof(socket_buffer_d), 0);

if (socket_data < 0) {printf("ERROR: Data not sent\nExiting...\n\n");exit(1);}

 printf("Socket Buffer D Packets: %d\n--------------------\n", socket_data);

break;

}

}

 //frame_counter++;
//Used to check sent frames

}

//Close the socket

close(socket_newsockfd);

close(socket_sockfd);

SpiClosePort(0);

return 0;

}
Appendix B: {client.cpp}
/*

Software created for Digilent Contest 2016

Project Name: Thermovision Camera

Library used: Socket, OpenCV

Revision: 2.2

Status: Not ready yet

Client.cpp

*/

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <sys/wait.h>

#include <signal.h>

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/opencv.hpp>

#include "flir_grading.h"

#define
SOCKET_PORT

7521

#define
SOCKET_SERVER

"127.0.0.1"

#define SOCKET_MAXDATASIZE

4800

#define SOCKET_BACKLOG 10

using namespace cv;

using namespace std;

int main(int argc, char *argv[]) {

 int socket_sockfd;

int socket_port;

int socket_data;

struct sockaddr_in server_addr;

struct hostent *socket_server;

 //Define the frame buffers, each 1/4 of 4800 because the maximum dimension of a packet is around 1500 bytes; 1200 will work just fine

 uint8_t socket_buffer_a[SOCKET_MAXDATASIZE/4];

 uint8_t socket_buffer_b[SOCKET_MAXDATASIZE/4];

 uint8_t socket_buffer_c[SOCKET_MAXDATASIZE/4];

 uint8_t socket_buffer_d[SOCKET_MAXDATASIZE/4];

//OpenCV Stuffs

 Mat lepton_image = imread("template.png"); //The image is used to define a certain dimension of the matrix; in our case is 80x60

 Mat scale_graph = imread("graph.png"); //"Legend" for temperature range

 Mat resized_image; //Matrix for resized flir-lepton image

 Mat camera_image; //Here will be "stored" the image from camera

 Mat output_image; //Image which will be diplayed on the screen

 Size received_imageresize(640, 480); //Define the desired size of image

 VideoCapture video_camera(0); //Open the main camera port; port "0"

printf("\n\n");

 //If no arguments are introduced set the "default" host and port.

 if (argc < 3) {

 printf("USAGE: hostname port\nInitializing connection with default parameters:\n HOST: 127.0.0.1\n PORT: 7521\n\n");

 socket_port = SOCKET_PORT;

 } else {

 //Convert to int the arg[2] (the port)

 socket_port = atoi(argv[2]);

 }

 //Create socket

 socket_sockfd = socket(AF_INET, SOCK_STREAM, 0); //The sockets returns a "valid" number

 //Check if the socket can be opened

 if (socket_sockfd < 0) {printf("ERROR: The socket cannot be opened\nExiting...\n\n"); exit(1);}

 //Set the server

 if (argc < 3) {

 //Default server defined above

 socket_server = gethostbyname(SOCKET_SERVER);

 } else {

 //Server inserted by user

 socket_server = gethostbyname(argv[1]);

 }

 if (socket_server == NULL) {printf("ERROR: No such server\nExiting...\n\n"); exit(1);}

 //Set all arguments to "0"

 bzero((char*) &server_addr, sizeof(server_addr));

 //Set the connection type, the port and server address

 server_addr.sin_family = AF_INET;

 server_addr.sin_port = htons(SOCKET_PORT);

 server_addr.sin_addr = *((struct in_addr *)socket_server->h_addr);

 memset(&(server_addr.sin_zero), '\0', 8);

 //Connect to server and check the connection

 if (connect(socket_sockfd,(struct sockaddr *) &server_addr, sizeof(server_addr)) < 0) {printf("ERROR: Connection failed.\nExiting...\n\n"); exit(1);}

 //Create a window using OpenCV with name "Flir Lepton"

 namedWindow("Flir Lepton", 1);

 int state = 0;

 //Get the image from camera and store in Mat

 video_camera.read(camera_image);

 //int frame_counter = 0; // Used to check the packets frames received

 while(1) {

 for(int k = 0; k < 8; k++) {

 //We are using a "for" loop to collect packets from socket one by one

 for(int i = 0; i < 4; i++){

 switch(i){

 case 0:

 //Receive the buffer A

 socket_data = recv(socket_sockfd, socket_buffer_c, (SOCKET_MAXDATASIZE/4), 0); //Return the number with received data

 //Check if the data has been received;

 if (socket_data < 0) {printf("ERROR: Failed to receive data from server\nExiting...\n\n"); exit(1);}

 //printf("-----FRAME %d-----\nSocket Buffer A: %d\n", frame_counter, socket_data); //Debugging stuffs

 break;

 case 1:

 //Receive the buffer B

 socket_data = recv(socket_sockfd, socket_buffer_d, (SOCKET_MAXDATASIZE/4), 0); //Return the number with received data

 //Check if the data has been received

 if (socket_data < 0) {printf("ERROR: Failed to receive data from server\nExiting...\n\n"); exit(1);}

 //printf("Socket Buffer B: %d\n", socket_data);

 break;

 case 2:

 //Receive the buffer C

 socket_data = recv(socket_sockfd, socket_buffer_a, (SOCKET_MAXDATASIZE/4), 0); //Return the number with received data

 //Check if the data has been received

 if (socket_data < 0) {printf("ERROR: Failed to receive data from server\nExiting...\n\n"); exit(1);}

 //printf("Socket Buffer C: %d\n", socket_data);

 break;

 case 3:

 //Receive the buffer D

 socket_data = recv(socket_sockfd, socket_buffer_b, (SOCKET_MAXDATASIZE/4), 0); //Return the number with received data

 //Check if the data has been received

 if (socket_data < 0) {printf("ERROR: Failed to receive data from server\nExiting...\n\n"); exit(1);}

 //printf("Socket Buffer D: %d\n--------------------\n", socket_data);

 break;

 }

 }

 //Fill the defined OpenCV Matrix with data from buffers

 //There are many others ways to fill the matrix, but I choosed this "long" way

 //Load the color mapping into "local" buffer to give a little bit of color to our image

 const int *color_grading = flir_grading;

 //Fill the matrix with first 15 rows

 int counter = 0; //Here is the buffer counter to "convert" the single-line buffer into matrix

 for (int row = 0; row < 15; row++) {

 for (int col = 0; col < 80; col++) {

 lepton_image.at<Vec3b>(Point(col, row))[2] = color_grading[(3*socket_buffer_a[counter])+2]; //Value for pixel R

 lepton_image.at<Vec3b>(Point(col, row))[1] = color_grading[(3*socket_buffer_a[counter])+1]; //Value for pixel G

 lepton_image.at<Vec3b>(Point(col, row))[0] = color_grading[(3*socket_buffer_a[counter])]; //Value for pixel B

 counter++;

 }

 }

 //Reset the buffer counter and fill the matrix between rows 16 and 30

 counter = 0;

 for (int row = 15; row < 30; row++) {

 for (int col = 0; col < 80; col++) {

 lepton_image.at<Vec3b>(Point(col, row))[2] = color_grading[(3*socket_buffer_b[counter])+2]; //Value for pixel R

 lepton_image.at<Vec3b>(Point(col, row))[1] = color_grading[(3*socket_buffer_b[counter])+1]; //Value for pixel G

 lepton_image.at<Vec3b>(Point(col, row))[0] = color_grading[(3*socket_buffer_b[counter])]; //Value for pixel B

 counter++;

 }

 }

 counter = 0;

 for (int row = 30; row < 45; row++) {

 for (int col = 0; col < 80; col++) {

 lepton_image.at<Vec3b>(Point(col, row))[2] = color_grading[(3*socket_buffer_c[counter])+2]; //Value for pixel R

 lepton_image.at<Vec3b>(Point(col, row))[1] = color_grading[(3*socket_buffer_c[counter])+1]; //Value for pixel G

 lepton_image.at<Vec3b>(Point(col, row))[0] = color_grading[(3*socket_buffer_c[counter])]; //Value for pixel B

 counter++;

 }

 }

 counter = 0;

 for (int row = 45; row < 60; row++) {

 for (int col = 0; col < 80; col++) {

 lepton_image.at<Vec3b>(Point(col, row))[2] = color_grading[(3*socket_buffer_d[counter])+2]; //Value for pixel R

 lepton_image.at<Vec3b>(Point(col, row))[1] = color_grading[(3*socket_buffer_d[counter])+1]; //Value for pixel G

 lepton_image.at<Vec3b>(Point(col, row))[0] = color_grading[(3*socket_buffer_d[counter])]; //Value for pixel B

 counter++;

 }

 }

 }

 resize(lepton_image, resized_image, received_imageresize); //Resize the image to desired resolution(640x480)

 addWeighted(resized_image, 0.65, camera_image, 0.35, 0.0, output_image); //Set opacity at 65% for lepton and 35% for camera

 scale_graph.copyTo(output_image(Rect(615, 40, 22, 400))); //Place the bar on the right side of the screen

 //Display the temperatures on the screen (still in development, we wrote some numbers to align the text)

 putText(output_image, "10.5", Point(580, 30), FONT_HERSHEY_PLAIN, 1.5, CV_RGB(255, 255 ,255), 4.0);

 putText(output_image, "10.5", Point(580, 465), FONT_HERSHEY_PLAIN, 1.5, CV_RGB(255, 255 ,255), 4.0);

 //Display the image in "Flir Lepton" Window defined earlier

 imshow("Flir Lepton", output_image);

 //If a key was pressed "break" the while loop, close the socket and exit

 if (waitKey(30) >= 0) {break;}

 }

 //Close the socket

close(socket_sockfd);

return 0;

}
Appendix C: {flir_gradient.h}
#ifndef FLIR_CROMATIC

#define FLIR_CROMATIC

const int flir_grading[] = {

//B

G

R

24
,
17
,
0
,

25
,
16
,
0
,

26
,
15
,
0
,

27
,
14
,
0
,

28
,
13
,
0
,

29
,
12
,
0
,

30
,
11
,
0
,

31
,
10
,
0
,

32
,
9
,
0
,

33
,
8
,
0
,

34
,
7
,
0
,

35
,
6
,
0
,

36
,
5
,
0
,

37
,
4
,
0
,

38
,
3
,
0
,

39
,
2
,
0
,

40
,
1
,
0
,

41
,
0
,
0
,

42
,
0
,
0
,

43
,
0
,
0
,

44
,
0
,
0
,

45
,
0
,
0
,

46
,
0
,
0
,

47
,
0
,
0
,

48
,
0
,
0
,

49
,
0
,
0
,

50
,
0
,
0
,

51
,
0
,
0
,

52
,
0
,
0
,

53
,
0
,
0
,

54
,
0
,
0
,

55
,
0
,
0
,

56
,
0
,
0
,

57
,
0
,
0
,

58
,
0
,
0
,

59
,
0
,
0
,

60
,
0
,
0
,

61
,
0
,
0
,

62
,
0
,
0
,

63
,
0
,
0
,

64
,
0
,
0
,

65
,
0
,
0
,

66
,
0
,
0
,

67
,
0
,
0
,

68
,
0
,
0
,

69
,
0
,
0
,

70
,
0
,
0
,

71
,
0
,
0
,

72
,
0
,
0
,

73
,
0
,
0
,

74
,
0
,
0
,

75
,
0
,
0
,

76
,
0
,
0
,

77
,
0
,
0
,

78
,
0
,
0
,

79
,
0
,
0
,

80
,
0
,
0
,

81
,
0
,
0
,

82
,
0
,
0
,

83
,
0
,
0
,

84
,
0
,
2
,

85
,
0
,
4
,

86
,
0
,
6
,

87
,
0
,
8
,

88
,
0
,
10
,

89
,
0
,
12
,

90
,
0
,
14
,

91
,
0
,
16
,

92
,
0
,
18
,

93
,
0
,
20
,

94
,
0
,
22
,

95
,
0
,
24
,

96
,
0
,
26
,

97
,
0
,
28
,

98
,
0
,
30
,

99
,
0
,
32
,

100
,
0
,
34
,

101
,
0
,
36
,

102
,
0
,
38
,

103
,
0
,
40
,

104
,
0
,
42
,

105
,
0
,
44
,

106
,
0
,
46
,

107
,
0
,
48
,

108
,
0
,
50
,

109
,
0
,
52
,

110
,
0
,
54
,

111
,
0
,
56
,

112
,
0
,
58
,

113
,
0
,
60
,

114
,
0
,
62
,

115
,
0
,
64
,

116
,
0
,
66
,

117
,
0
,
68
,

118
,
0
,
70
,

119
,
0
,
72
,

120
,
0
,
74
,

121
,
0
,
76
,

122
,
0
,
78
,

123
,
0
,
80
,

124
,
0
,
82
,

125
,
0
,
84
,

126
,
0
,
86
,

127
,
0
,
88
,

128
,
0
,
90
,

129
,
0
,
92
,

130
,
0
,
94
,

131
,
0
,
96
,

132
,
0
,
98
,

133
,
0
,
100
,

134
,
0
,
102
,

135
,
0
,
104
,

136
,
0
,
106
,

137
,
0
,
108
,

138
,
0
,
110
,

139
,
0
,
112
,

140
,
0
,
114
,

141
,
0
,
116
,

142
,
0
,
118
,

143
,
0
,
120
,

144
,
0
,
122
,

145
,
0
,
124
,

146
,
0
,
126
,

147
,
0
,
128
,

148
,
0
,
130
,

149
,
0
,
132
,

150
,
0
,
134
,

151
,
0
,
136
,

152
,
2
,
138
,

153
,
4
,
140
,

154
,
6
,
142
,

155
,
8
,
144
,

156
,
10
,
146
,

157
,
12
,
148
,

158
,
14
,
150
,

159
,
16
,
152
,

160
,
18
,
154
,

161
,
20
,
156
,

162
,
22
,
158
,

163
,
24
,
160
,

164
,
26
,
162
,

165
,
28
,
164
,

166
,
30
,
166
,

167
,
32
,
168
,

168
,
34
,
170
,

168
,
36
,
172
,

168
,
38
,
174
,

168
,
40
,
176
,

168
,
42
,
178
,

168
,
44
,
180
,

168
,
46
,
182
,

168
,
48
,
184
,

167
,
50
,
186
,

166
,
52
,
188
,

165
,
54
,
190
,

164
,
56
,
192
,

163
,
58
,
194
,

162
,
60
,
196
,

161
,
62
,
198
,

160
,
64
,
200
,

156
,
66
,
202
,

152
,
68
,
204
,

148
,
70
,
206
,

144
,
72
,
208
,

140
,
74
,
210
,

136
,
76
,
212
,

132
,
78
,
214
,

128
,
80
,
216
,

124
,
82
,
218
,

120
,
84
,
220
,

116
,
86
,
222
,

112
,
88
,
224
,

108
,
90
,
226
,

104
,
92
,
228
,

100
,
94
,
230
,

96
,
96
,
232
,

92
,
98
,
234
,

88
,
100
,
236
,

84
,
102
,
238
,

80
,
104
,
240
,

76
,
106
,
242
,

72
,
108
,
244
,

68
,
110
,
246
,

64
,
112
,
248
,

60
,
114
,
250
,

56
,
116
,
252
,

52
,
118
,
254
,

48
,
120
,
255
,

44
,
122
,
255
,

40
,
124
,
255
,

36
,
126
,
255
,

32
,
128
,
255
,

28
,
130
,
255
,

24
,
132
,
255
,

20
,
134
,
255
,

16
,
136
,
255
,

12
,
138
,
255
,

8
,
140
,
255
,

4
,
142
,
255
,

0
,
144
,
255
,

1
,
146
,
255
,

2
,
148
,
255
,

3
,
150
,
255
,

4
,
152
,
255
,

5
,
154
,
255
,

6
,
156
,
255
,

10
,
158
,
255
,

15
,
160
,
255
,

20
,
162
,
255
,

25
,
164
,
255
,

30
,
166
,
255
,

35
,
168
,
255
,

40
,
170
,
255
,

45
,
172
,
255
,

50
,
174
,
255
,

55
,
176
,
255
,

60
,
178
,
255
,

65
,
180
,
255
,

70
,
182
,
255
,

75
,
184
,
255
,

80
,
186
,
255
,

85
,
188
,
255
,

90
,
190
,
255
,

95
,
192
,
255
,

100
,
194
,
255
,

105
,
196
,
255
,

110
,
198
,
255
,

115
,
200
,
255
,

120
,
202
,
255
,

125
,
204
,
255
,

130
,
206
,
255
,

135
,
208
,
255
,

140
,
210
,
255
,

145
,
212
,
255
,

150
,
214
,
255
,

155
,
216
,
255
,

160
,
218
,
255
,

165
,
220
,
255
,

170
,
222
,
255
,

175
,
224
,
255
,

180
,
226
,
255
,

185
,
228
,
255
,

190
,
230
,
255
,

195
,
232
,
255
,

200
,
234
,
255
,

205
,
236
,
255
,

210
,
238
,
255
,

215
,
240
,
255
,

220
,
242
,
255
,

225
,
244
,
255
,

230
,
246
,
255
,

235
,
248
,
255
,

240
,
250
,
255
,

245
,
252
,
255
,

250
,
254
,
255
,

255
,
255
,
255
,

};

#endif
Appendix D: {SPI.h}
/*

 * SPI testing utility (using spidev driver)

 *

 * Copyright (c) 2007 MontaVista Software, Inc.

 * Copyright (c) 2007 Anton Vorontsov <avorontsov@ru.mvista.com>

 *

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation; either version 2 of the License.

 *

 * Cross-compile with cross-gcc -I/path/to/cross-kernel/include

 */

#ifndef SPI_H

#define SPI_H

#include <string>

#include <stdint.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/types.h>

#include <linux/spi/spidev.h>

extern int spi_cs0_fd;

extern int spi_cs1_fd;

extern unsigned char spi_mode;

extern unsigned char spi_bitsPerWord;

extern unsigned int spi_speed;

int SpiOpenPort(int spi_device);

int SpiClosePort(int spi_device);

int spi_cs0_fd = -1;

int spi_cs1_fd = -1;

unsigned char spi_mode = SPI_MODE_3;

unsigned char spi_bitsPerWord = 8;

unsigned int spi_speed = 10000000;

int SpiOpenPort (int spi_device)

{

int status_value = -1;

int *spi_cs_fd;

//----- SET SPI MODE -----

//SPI_MODE_0 (0,0) CPOL=0 (Clock Idle low level), CPHA=0 (SDO transmit/change edge active to idle)

//SPI_MODE_1 (0,1) CPOL=0 (Clock Idle low level), CPHA=1 (SDO transmit/change edge idle to active)

//SPI_MODE_2 (1,0) CPOL=1 (Clock Idle high level), CPHA=0 (SDO transmit/change edge active to idle)

//SPI_MODE_3 (1,1) CPOL=1 (Clock Idle high level), CPHA=1 (SDO transmit/change edge idle to active)

spi_mode = SPI_MODE_3;

//----- SET BITS PER WORD -----

spi_bitsPerWord = 8;

//----- SET SPI BUS SPEED -----

spi_speed = 10000000;

//1000000 = 1MHz (1uS per bit)

if (spi_device)

spi_cs_fd = &spi_cs1_fd;

else

spi_cs_fd = &spi_cs0_fd;

if (spi_device)

*spi_cs_fd = open(std::string("/dev/spidev0.1").c_str(), O_RDWR);

else

*spi_cs_fd = open(std::string("/dev/spidev0.1").c_str(), O_RDWR);

if (*spi_cs_fd < 0)

{

perror("Error - Could not open SPI device");

exit(1);

}

status_value = ioctl(*spi_cs_fd, SPI_IOC_WR_MODE, &spi_mode);

if(status_value < 0)

{

perror("Could not set SPIMode (WR)...ioctl fail");

exit(1);

}

status_value = ioctl(*spi_cs_fd, SPI_IOC_RD_MODE, &spi_mode);

if(status_value < 0)

{

perror("Could not set SPIMode (RD)...ioctl fail");

exit(1);

}

status_value = ioctl(*spi_cs_fd, SPI_IOC_WR_BITS_PER_WORD, &spi_bitsPerWord);

if(status_value < 0)

{

perror("Could not set SPI bitsPerWord (WR)...ioctl fail");

exit(1);

}

status_value = ioctl(*spi_cs_fd, SPI_IOC_RD_BITS_PER_WORD, &spi_bitsPerWord);

if(status_value < 0)

{

perror("Could not set SPI bitsPerWord(RD)...ioctl fail");

exit(1);

}

status_value = ioctl(*spi_cs_fd, SPI_IOC_WR_MAX_SPEED_HZ, &spi_speed);

if(status_value < 0)

{

perror("Could not set SPI speed (WR)...ioctl fail");

exit(1);

}

status_value = ioctl(*spi_cs_fd, SPI_IOC_RD_MAX_SPEED_HZ, &spi_speed);

if(status_value < 0)

{

perror("Could not set SPI speed (RD)...ioctl fail");

exit(1);

}

return(status_value);

}

int SpiClosePort(int spi_device)

{

int status_value = -1;

int *spi_cs_fd;

if (spi_device)

spi_cs_fd = &spi_cs1_fd;

else

spi_cs_fd = &spi_cs0_fd;

status_value = close(*spi_cs_fd);

if(status_value < 0)

{

perror("Error - Could not close SPI device");

exit(1);

}

return(status_value);

}

#endif
Fig. 1:Block Diagram of Design

 Fig.1b: Block Diagram parts

page 1 of 1
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.
www.digilentinc.com

page 16 of 49
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

