// "Another easier inverted pendulum balancing robot"
// You need only half a day to make it, if you have some Materials.
// (This sketch is ver.2.0.d for a digital output gyroscope.)
// No timer library is used in this version.
// But stability of robot is more improved than earlier version.
// Copyright (C) 2014 ArduinoDeXXX All Rights Reserved.

#include <MsTimer2.h> //01 (This line is omitted in ver.2.0 and the later.)
#include <SPI.h> //DL1 (These 17 lines, DL1-DL17, are added in this version.)

byte countS = 0;//02 (This line is omitted in this version.)
int i = 0; //03
long zeroOmegaI = 0; //04 (This line is omitted in this version.)
int recOmegaI[10];//05
int omegaI = 0;//06
long thetaI = 0;//07
long sumPower = 0;//08
long sumSumP = 0;//09
const int kAngle = 50;//10
const int kOmega = 500;//11
const long kSpeed = 60;//12
const long kDistance = 20;//13
long powerScale://14
int power://15
long vE5 = 0;//16
long xE5 = 0;//17

void L3GD20_write(byte reg, byte val) { //DL4
 digitalWrite(10, LOW); //DL5
 SPI.transfer(reg); //DL6
 SPI.transfer(val); //DL7
 digitalWrite(10, HIGH); //DL8
} //DL9

byte L3GD20_read(byte reg) { //DL10
 byte ret = 0; //DL11
 digitalWrite(10, LOW); //DL12
 SPI.transfer(reg | 0x80); //DL13
 ret = SPI.transfer(0); //DL14
 digitalWrite(10, HIGH); //DL15
 return ret; //DL16
} //DL17

void setup () { //18
 Serial .begin(115200); //19
 pinMode(4, OUTPUT); //20
 pinMode(5, OUTPUT); //20-a
 pinMode(6, OUTPUT); //21
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 for (int i = 0 ; i < 10 ; i++) { recOmegaI[i] = 0; }//25 ("int" is added instead of line 2 omitted.)

 pinMode(10, OUTPUT); //DL18 (These 8 lines, DL18-DL25, are added in this version.)
 digitalWrite(10, HIGH); //DL19
 SPI.begin(); //DL20
 SPI.setBitOrder(MSBFIRST); //DL21
 SPI.setDataMode(SPI_MODE3); //DL22
 SPI.setClockDivider(SPI_CLOCK_DIV2); //DL23
 L3GD20_write(0x20, B11001111); //DL24
 L3GD20_write(0x23, B00000000); //DL25
 delay(300); //26
 // training(); // (This line is omitted in this version.)
void loop () { //31
 chkAndCtl(); // NL1 (This line is added in ver.2.0 and the later.)
 if (power > 0) { //32
 analogWrite(6, power);
 digitalWrite(4, HIGH);
 digitalWrite(5, LOW); //35
 analogWrite(9, power);
 digitalWrite(7, HIGH);
 digitalWrite(8, LOW);
 } else { //36
 analogWrite(6, - power);//40
 digitalWrite(4, LOW);
 digitalWrite(5, HIGH);
 analogWrite(9, - power);
 digitalWrite(7, LOW);
 digitalWrite(8, HIGH); //45
 } // delayMicroseconds(3600); // NL2 (This is omitted in this version.)
} //30

void chkAndCtl() { //55
 omegaI = 0; // NL3 (These 6 lines, NL3-NL8, are omitted in this version.)
 for (i = 0 ; i < 10 ; i++) { //NL4
 omegaI = omegaI + analogRead(A5) - zeroOmegaI; //NL5
 delayMicroseconds(10); //NL6
 } //NL7
 omegaI = omegaI / 10; //NL8
 R = 0; //DL26 (These 7 lines, DL26-DL32, are added in this version.)
 for (int i = 0 ; i < 45 ; i++) { //DL27 ("int" is added instead of line 2 omitted.)
 ry = ((L3GD20_read(0x2B) << 8) | L3GD20_read(0x2A)); //DL28
 R = R + ry; //DL29
 delayMicroseconds(90); //DL30
 } //DL31
 omegaI = R * 0.00875 / 45; //DL32
} //54
powerScale = (kAngle * thetaI / 100) + (kOmega * omegal / 100) + (kSpeed * vE5 / 1000) + (kDistance * xE5 / 1000) /

power = max (min (95 * powerScale / 100 . 255) , -255) :
sumPower = sumPower + power :
sumSumP = sumSumP + sumPower : //75
// vE5 = ??? //76
// xE5 = ??? //77
} //78
// Copyright (C) 2014 ArduinoDeXXX All Rights Reserved. //79