40 SYSTEMS

TURNING TECHNOLOGY INTO ART

N
U

ViSi Genie Writing to Genie Objects
Using an Arduino Host

Document Date: 23" July 2014

Document Revision: 1.0

w
|_
@
pa
pa
=
|_
<
=
_
o
il
S



4D SYSTEMS

4D-AN-00018

This Application Note explores the possibilities provided by the ViSi-Genie
environment in Workshop to work with an Arduino host. In this example,
the host is an AVR ATmega328 microcontroller-based Arduino Uno board.
The host can also be an Arduino Mega 2560 or Due. Ideally, the application
described in this document should work with any Arduino board with at
least one UART serial port. See specifications of Aduino boards here.

Before getting started, the following are required:

e Any of the following 4D Picaso display modules:
uLCD-24PTU uLCD-28PTU uLCD-32PTU

uLCD-32WPTU uLCD-43(P/PT/PCT) uVGA-III

other superseded modules which support the ViSi Genie

environment

e The target module can also be a Diablo16 display

uLCD-35DT uLCD-70DT
See the section “Write to a Pin Output Object” when compiling this

project for a Diablo16 display module.

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display
module used in this application note is the uLCD-32PTU, which is a
Picaso display. This application note is applicable to Diablo16
display modules as well.

4D Programming Cable or ptUSB-PA5
micro-SD (uSD) memory card

Workshop 4 IDE (installed according to the installation document)
Any Arduino board with a UART serial port and Arduino IDE
4D Arduino Adaptor Shield (optional) or connecting wires

When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read or
has a working knowledge of the topics presented in these
recommended application notes.

© 2014 4D Systems Page 2 of 19

www.4dsystems.com.au


http://arduino.cc/en/Products.Compare
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/uSD_2GB/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://arduino.cc/en/Main/Software

40 SYSTEMS 4D-AN-00018
WILE t0 @ LED DIGILS .vvvvvvveverrvessnsssesssessssssssssssssssessssssssssessssssssssssssens 11
Write to @ ThermMOmMEeter .....ocuiii e 12
[0 T=TY ol 4] ] 4 o 1 2 Write t0 @ Meter ..o 12
L0011 T o | PPN 3 WEite t0 @ USEr LED oo 12
APPliCation OVErVIEW .......ccuuiimiiniiiiiisissi e, 4 LT g o o T TV T 1= o TR 12
SEtUP ProCeAUre .....cceeuiiieiiieiiiiiiieeiiricreeerensisrnssstnsssrnsssssessssnssssnssssnnnns 5 Write to a Predefined StHNgs OBJEC........ovvveeorvveeeesoseeseseseeeeseeseee 13
Writing to Genie Objects Using an Arduino HOSt .........ovevuuniunniinscninnnen, 3 WIItE 10 @ TIMEK ettt et 13
N T a0 1T o= qe] 0] o] =T o1 £ USRI 5 WIItE t0 @ SOUNTS OBJECE w.rvrovvveeeeeeeeeooeeeeeeeeeooe oo 14
WIting 10 @n ODJECT.....uviiiii it e e 6 WIIte t0 @ SPECEIUM OBJECE vvvvveeeeeeeeeeeseeeeeseoeseese oo ssse e 15
WIiting t0 @ String OBJECE w.ooovovvivviiiiiinii 6 Write to @ SCOPE OBJECE ..vvviiiiiieiieieeeeeee e 15
Write t0 @ DIP SWItCh ..cooiiiiiiiiiceee e 8 WIIte t0 @ TANK OBJECE cvvvvvreeeeoeeeseeseoeooeeess oo esseseeeseesssee oo 15
Write t0 @ KNOD ...eeieieeee e 9 Write t0 @ USEr IMages OBJECE .ovvvvvervveeeoeseeeeseseesesesseessessseees s 15
Write to @ Rocker SWItCh.......ccciiiiiiiii e, 9 WIIte t0 @ Pin OULPUE OBJECE..ovvvvvveooeeeeeeeeoeeseoeseeee oo 15
Write to a Rotary SWItCh .......ccuvviiiiiie e 9 WIte t0 @ 4D BULLON OBJEC...vvvvevroeoveeeeeeesoesosesesseessoeeesseesssee e 17
WIite 10 @ SHABK e 9 Write to an Animated BUttOn OBJECE .........rvvveeeeeseoeseeeesseeeeoeeeseeeoee 17
Wrrit€ 10 @ Track Bar ....cccueeeiieeiieeiieeie ettt 10 WFite t0 @ COlOU PICKEF OBJECE ..vvvvmvvvveeeeeoeeooeeeeeee oo 18
Write to @ Winbutton ........oocueiiiiiiiieee e 10 WIite t0 @ USEr BULEON OBJECE..vvv.rooovveeeeeoeeoooeeeeeeeeooeesseeesoe oo 18
Navigate 10 a NEW FOMM ..o, 10 Proprietary INnformation ..........ccceeeiiiiieciiieiccrrccccrreece e e enens 19
Write to an AngUIAr MEter........cocuuuuiiiviiiininiiiiis 10 Disclaimer of Warranties & Limitation of Liability ......cc..cccceeuurrreannnnnnee.. 19
Write t0 @ COOl GAUEBE ....vvveeeieiiiieee ettt et e e e e e arae e e e 10
Write to @ CUStOM DigitS ...uceeeeiiiiiiiiiiiiicccee e 11
Wt 10 @ GAUEBE .o iiieeeiiieiiieie et e e e e e e e e e aeaenaes 11
Write to @an LED ...ccooiiiiiiiiiiiiiiiiiii 11

© 2014 4D systems

Page 3 of 19

www.4dsystems.com.au



4D SYSTEMS

4D-AN-00018

Application Overview

It is often difficult to design a graphical display without being able to see
the immediate results of the application code. ViSi-Genie is the perfect
software tool that allows users to see the instant results of their desired
graphical layout with this large selection of gauges and meters (called
widgets) that can simply be dragged and dropped onto the simulated
module display. The following are some examples of widgets or objects
used in this application note.

LED digits m Slider

Cool gauge Strings hello warld

o
—lhs

This document is a supplement to ViSi-Genie Connecting a 4D Display to an

Arduino _Host. The application of the Genie class member function
WriteObject () function to different Genie objects is shown here. A
ViSi-Genie program and an Arduino sketch are provided for demonstration
purposes. The ViSi Genie program contains the different objects created in

Workshop. The Arduino sketch contains the commands to control each of
these objects. To learn how to create a ViSi Genie program, go to
http://www.4dsystems.com.au/appnotes/. The page contains application

notes which explain how to create and configure objects in a ViSi-Genie
program.

© 2014 4D systems

Page 4 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnotes/

4D SYSTEMS

4D-AN-00018

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie
project, and how to change the target display, kindly refer to the section
“Setup Procedure” of the application note:

ViSi Genie Getting Started — First Project for Picaso Displays (for Picaso)

or
ViSi Genie Getting Started — First Project for Diablo16 Displays (for
Diablo16).

Writing to Genie Objects Using an Arduino

Host

Naming of Objects

When creating objects in the Workshop IDE, objects are automatically
named as they are created. For instance, the first cool gauge object added
will be given the name Coolgauge0. The object name, along with the object
properties, is shown by the Object Inspector.

Ohject Inspector 2
Form | Formz2 W
Ohject | Coolgauged W

Properties | Eyvents

Property Value #
Mame Coolgauged
Analogue (Maone)

Naming is important to differentiate between objects of the same kind. For
example, suppose the user adds another cool gauge object to the
WYSIWYG (What-You-See-Is-What-You-Get) screen. This object will be
given the name Coolgaugel — it being the second cool gauge in the
program. The third cool gauge will be given the name Coolgauge2, and so
on. An object’s name therefore identifies its kind and its unique index
number. It has an ID (or type) and an index.

© 2014 4D systems

Page 5 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

4D SYSTEMS

4D-AN-00018

Coolga uge(l)
| |

\_Y_I

Object ID

Object index

It is important to take note of an object’s ID and index. When
programming in the Arduino IDE, an object’s status can be polled or
changed if its ID and index are known, as will be shown in the next section.

Writing to an Object

The status of a ViSi-Genie object can be controlled or changed by a host
controller with the appropriate message sent thru the serial port. The
format of this message is defined in the ViSi Genie Communications
Protocol which is discussed in the ViSi Genie User Reference Manual. To

write to a ViSi-Genie object, the format is:

2.1.2 Command and Parameters Table !

Command Code | Parameter 1| Parameter 2 | Parameter 3 Parameter 4|| Checksum

WRITE_OBJ 0x01 | Object ID Obiject Index | Value (msb) Value(lsb) Checksum

The ViSi-Genie-Arduino library implements this format as a function, the
prototype for which is declared under the Genie class.

WriteObject (uintlé t object,
uintlé t index, uintlé t data);

The first parameter must be an integer which specifies the object ID. The
second parameter is an integer which specifies the index of the object. The
third parameter is an integer which holds the data to be written to the
object. Example:

genie.WriteObkject (GENIE OBJ COOL GAUGE, 0x=00, gaugeval);

Note that the third parameter must be an integer. Floats and other data
types cannot be passed as an argument to this function. The Arduino
platform provides functions for converting floats to integers. The user can
refer to the Arduino website for further information.

Writing to a String Object

String objects can display predefined text (created in the ViSi-Genie
environment) or dynamic text received from the host. The process of
making a string object display predefined text is discussed in the section
“Write to a Predefined Strings Object”. For the host to write a dynamically
created text to a string object, the format of the message is:

2.1.2 Command and Parameters Table

Command Code | Parameter 1| Parameter 2 | Parameter 3 Parameter 4| Parameter N| Checksum

WRITE_STR 0x02 | String Index | String Length| String (1 byte chars) Checksum

The function prototype for this in the ViSi-Genie-Arduino library is:

© 2014 4D systems

Page 6 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

4D SYSTEMS

4D-AN-00018

WriteStr (uintlée t index, char *string);

The first parameter is the index of the string. The second parameter is a
pointer to a null-terminated character array. Examples:

#define GENIE VERSICHN "GenieArduine 31-Mar-2014"
genie.Writestr (0, GENIE VERSION) ;

char myarray[6] = {'h', Te', T1T,T1T,To", V0" };
genie.WriteStr (0, myArray):

char myArraya[] = "Welcome teo 4D Systemsl";

genle.WriteStr (0, myArrayz);

Note that for all three examples, the second argument for
genie.WriteStr () is a pointer to a null-terminated character array.
Section 2.1.3.3 Write String (ASCIl) Message of the ViSi-Genie Reference
Manual emphasizes this.

Motel: The ASCII characters are 1 byte each.

Mote2: The String should be null terminated. «

Mote3: Refer to the application notes for detailed information on

It is a common mistake for beginners to use integers, strings, floats, and
other data types instead of a pointer to a null-terminated character array
as the second argument passed to genie.WriteStr () . The Arduino

platform provides functions for converting integers, strings, and floats to
null-terminated character arrays. The user can refer to the Arduino
website for further information.

The ViSi-Genie Arduino library handles the actual communication between
the Arduino host and the display module, making sure that the message
sent is of the correct format. This also includes error checksum coding,
acknowledgment, etc. The user will just have to specify the strings object
index and the string to be displayed when using genie.WriteStr () .

The user can easily associate the syntax of the functions to the
corresponding format in the ViSi-Genie Communications Protocol. Table
3.3 of the manual shows the objects and their ID numbers.

Object B |[cauge 11 (0x0B) | [Sound 22 (0x16)
Dipswitch 0 {0x00) || Image 12 (0x0C) || Timer 23 (0x17)
Knob 1 (0x01) ||| Keyboard 13 (0=0D) ||Spectrum 24 |0x18)
Rockerswitch 2 (0x02) Scope 25 {0x19)
Rotaryswitch 3 (0x03) || Led 14 (0=0E) || Tank 26 [0xlA)
Slider 4 (0x04) || Leddigits 15 (0x0F) ||Userlmages 27 [0x1B)
Trackbar 5 (0w05) ||| pdeter 16 (0x10) ||PinOutput 28 (0x1C)
Winbutton 6 (0x0B) ||| Strings 17 (Ox1l) ||Pinlnput 29 [0x1D)
Angularmeter 7 (0x07) || Thermometer 18 (0x12) ||4Dbutton 30 (0x1E)
Coolgauge 8 (0x08) |||Userled 19 (0x13) ||AniButton 31 (0x1F)
Customdigits 9 (0xe0S) || Video 20 (0x14) ||ColorPicker 32 (0x20)
Form 10 (Om0A)| | Statictext 21 (0x15) ||UserButton 33 (0n21)

In the ViSi-Genie-Arduino library, the ID numbers are then used to define
the Genie object constants.

© 2014 4D systems

Page 7 of 19

www.4dsystems.com.au




4D SYSTEMS

4D-AN-00018

GENIE OBJ DIPSW
GENIE OBJ_ KNOB
GENIE_ OBJ_ ROCKERSW
GENIE OBJ ROTARYSW
GENIE_OBJ SLIDER
GENIE OBJ_ TRACKBAR
GENIE OBJ WINBUTTON
GENIE OBJ ANGULAR METER
GENIE OBJ_ COOL_GAUGE
GENIE OBJ CUSTOM DIGITS
GENIE OBJ_FORM
GENIE OBJ GAUGE
GENIE_OBJ_ IMAGE
GENIE_OBJ_ KEYBOARD
GENIE OBJ_LED

GENIE OBJ LED DIGITS
GENIE_OBJ METER
GENIE OBJ STRINGS

i

LI Ve T S o TR O SR Y W T A T S

GENIE OBJ THERMOMETER
GENIE OBJ USER_LED
GENIE OBJ VIDEO

GENIE OBJ STATIC TEXT
GENIE OBJ_ SOUND
GENIE OBJ TIMER
GENIE OBJ SPECTRUM
GENIE OBJ SCOPE
GENIE OBJ TANK

GENIE OBJ USERIMAGES
GENIE OBJ PINOUTEUT
GENIE OBJ PININEUT
GENIE OBJ 4DBUTTON
GENIE OBJ ANIBUTTON
GENIE OBJ COLORPICEER
GENIE OBJ USERBUTTON

=
Lo oo

[N I ]
[ ]

21
22
23
24
25
26
27
28
29
30
31
32
33

The following sections now show how the genie.WriteObject ()

function is applied to different Genie objects. Writing to the keyboard,

static text, image, and pin input objects is not possible.

Write to a DIP Switch

To write to a DIP switch:

delay (30007 ;

genie.WriteObject (GENIE OEJ DIPSW,

Ox=00,

oy

A three-second delay is added for the observer to see the object at the
current state. Note that the function has three arguments as defined in the
ViSi-Genie-Arduino library. The first argument is the Genie object to be
written to, the second is the object index, and the third is the value which
represents the state of the DIP switch. Thus, the command

genie.WriteOkject (GENIE OBJ DIPSW, 0x00, 0);
delay (30007 ;
yields the result
State O
The command
genie.WriteObject (GENIE_OBJ DIPSW, 0x00, 1);
delay (30007 ;
yields the result
State 1
Table 2.1.2 shows the format for writing to objects.
Command | Code | Parameter 1| Parameter 2| Parameter 3 | Parameter 4| Checksum
WRITE_OBJ | 0x01 | Object ID Object Index | Value (msh) | Value(lsb) Checksum

© 2014 4D systems

Page 8 of 19

www.4dsystems.com.au




4D SYSTEMS

4D-AN-00018

For further information, refer to the ViSi Genie User Reference Manual.

The document gives an informative description of all of the Genie objects
in relation to the ViSi Genie communications protocol.

Write to a Knob

/fwrite to a knob
genle.WriteStr (0, "Enckl at ‘“nvaricus states");
for(i = 0; 1<100; i+4)¢
genie.WriteObject (GENIE_OBJ_ENOE, 0x00, 1i):
delay (1007 ;

The code above will make KnobO change its state from 0 to 99, hence
making it appear to rotate.

Write to a Rocker Switch

//write to a rockerswitch

genlie.WriteStr (0, "Rockerswitchl at 07);
genie.WriteOkject (GENIE OBJ ROCKERSW, 000, 0);
delay (30007 ;

genlie.WriteStr (0, "Rockerswitchl at 17);
genie.WriteOkject (GENIE OBEJ ROCKERSW, 0x=00, 1);
delawy (3000 ;

Similar to the DIP switch example, the code above displays the rocker
switch at state 0 and then at state 1.

State O State 1

Write to a Rotary Switch

S /write to a rotary switch

genie.WriteStr {0, "Rotaryswitchl atn wvariocus states");

for(i = 0; 1<9; 1i++31
genie.WriteObject (GENIE_ OEJ ROTARYSW, 0x00, 1i);
delay (3500 ;

H

The code above will make RotaryswitchO change its state from 0 to 8. To
learn how to configure a rotary switch, refer to ViSi-Genie Inputs.

Write to a Slider

//write to a slider

genie.WriteStr (0, "2liderl at ‘“nvariocus states");

for{i = 0; i1<100; i++)4
genie.WriteOkject (GENIE OBJ SLIDER, 0x00, 1);
delay (1000 ;

H

Similar to the knob example, the code above will make SliderO change its
state from 0 to 99.

© 2014 4D systems

Page 9 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/appnote/4D-AN-00009/

4D SYSTEMS

4D-AN-00018

Write to a Track Bar

//fwrite to a trackbar
genle. WriteStril, "Trackbarl at ‘“nvaricus statez");
forii = 0; 1<100; i++4){
genie.WriteOkbject (GENIE_OEJ TRACKEBAR, 0x00, 1i):
delay (1007 ;
i

The code above will make TrackbarO change its state from 0 to 99.

Write to a Winbutton

//write to a winbutton

genie.Write3tr (0, "Winkbuttonl at 07);
genie.WriteObject (GENIE_OBJ WINBUTTON, 0x00, 0);
delay (30007 ;

genie.Writedtr (0, "Winkbuttonl at 17):
genie.WriteObject (GENIE _OBJ WINBUTTON, 0x00, 1);
delay (30007 ;

Similar to the DIP switch example, the code will show WinbuttonO at state
0 and then at state 1.

wlinbutts State 0 ﬂ’.i.%:ﬂ State 1
onl on

The button used in this example is configured as a toggle button. ViSi-
Genie Advanced Buttons explains how to create a toggle button.

Navigate to a New Form

/inavigate to Forml
genie.WriteObject (GENIE OBJ FORM, 0x01,0);:

genie.WriteStr(l, "Thi= i= now “nForml™);

The second parameter, 0x01 is the index of the form to be activated. The
third argument can be of any value since the Genie communications
protocol does not require a value (MSB and LSB). See section 3.2.6.1 of the
ViSi Genie User Reference Manual.

Write to an Angular Meter

Jffwrite to an angular meter

genie.WriteStri{l, "Angularmeterl at ‘“nvaricus states");:
fori{i = 0; i<100; i++)¢
genie.WriteObject (GENIE OBJ ANGULAR METER, 0x00, i);
delay (1000 ;3

The code above will make Angularmeter0 change its state from 0 to 99.

Write to a Cool Gauge

//write to a cool gauge

genie.WritesStr (2, "Coolgaugel at ‘nvarious states");
for(i = 0; 1<100; i++)¢
genie.WriteObject (GENIE 0OBJ COOL GAUGE, 0x00, 1):
delay (1007 ;3

The code above will make Coolgauge0 change its state from 0 to 99.

© 2014 4D systems

Page 10 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00004/
http://www.4dsystems.com.au/appnote/4D-AN-00004/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

4D SYSTEMS

4D-AN-00018

Write to a Custom Digits

ffwrite to a custom digit

genie.Writestr (3, "Customdigits0 at ‘“nvaricus states™);
for{i = 0; 1<100; 14434
genie.WriteObject (GENIE OEJ CUSTOM DIGITS, 0Ox00, i);
delay (1003 ;1

The code above will make CustomdigitsO change its state from 0 to 99. To
learn how to create a custom digits object, open the ViSi sample program
in Workshop under File menu — Samples — Picaso ViSi — CLOCK. The block
comment discusses how the bitmap image of the digits was created.

Write to a Gauge

/fwrite to a gauge

genle.Writedtr (3, "Zaugsl at ‘“‘nvarious states");
for(i = 0; 1<100; 1447314

genie.WriteObject (GENIE_OBJ GAUGE, 0x00, 1i);:
delay (1007 ;)

The code above will make GaugeO change its state from 0 to 99.

Write to an LED

//write to an LED

genie.Write3tr (3, "Ledl at 07):
genie.WriteObject (ZENIE OBJ LED, 0x=00, 0);
delay (30007 ;

genie.Write3tr (3, "Ledl at 17):
genie.WriteObject (GENIE OBJ LED, 0=00, 1);
delay (3000} ;

Similar to the DIP switch example, the code above displays the LED at state

0 and then at state 1.

Write to a LED Digits

//write to a LED digits

genie.WriteStr (3, "Leddigits0 at ‘nvarious states");
for(i = 0; i<100; i++)
genie.WriteObject (GENIE OEJ LED DIGITS, O0=z00, 1i);
delay (1007 ;13

The code above will make LeddigitsO change its state from 0 to 99.

© 2014 4D systems

Page 11 of 19

www.4dsystems.com.au



4D SYSTEMS

4D-AN-00018

Write to a Thermometer

ffwrite to a thermometer

genie.Writeftrid4, "Thermometerl at “nvaricus states");
for{i = 0; 1<100; i+4){
genie.WriteObject (GENIE_OBJ THERMOMETER, O0x00, i);
delay (100) ;1

The code above will make ThermometerO change its state from 50 to 149.
Note that the value sent by the Arduino host is offset by 50. The user has
to account for this offset.

Write to a Meter

ffwrite to a meter

genie.WritesStrid, "Meterl at ‘“nvariocus statezs™);
fori{i = 0; i<100; 1i++)1{
genie.WriteOkject (GENIE OBJ METER, 0x00, i):
delay (1007 ;3

The code above will make Meter0 change its state from 0 to 99.

Write to a User LED

//write to a user LED

genie.Write3tr (&, "Userledd at 07);
genie.WriteOkject (GENIE _OEJ USER _LED, 0x=00, 0};
delasy (30007 ;

genie.Writeltr (5, "Userledl at 17);
genie.WriteObject (ZENIE OBJ USER_LED, 0x00, 1);
delay (30007 ;

The code above displays the UserledO at state 0 and then at state 1.

State O State 1

Write to a Video

fiwrite to a video

genlie.WriteStri5, "display the different ‘“nframes of Videol");
for(i = 0; 1<749; 1++){

genie.WriteObject (GENIE OBJ VIDEO, 0x00, i)

delay (400}

The code above will play VideoO. Take note of the frame values and delay.
The Object Inspector shows the frame properties of a video.

© 2014 4D systems

Page 12 of 19

www.4dsystems.com.au



4D SYSTEMS

4D-AN-00018

Ohject Inspector 3
Form | Form5s W
Ohject | VideoO W

Properties | Events

Property Value
MName VideoO
El Frames

First 0

Last 743

FrameDelay 40

The FrameDelay (milliseconds) is equal to the reciprocal of the frame rate
(fps).

Write to a Predefined Strings Object

Besides displaying a dynamically created ASCIl text received from the
Arduino host, the user also has the option of displaying a predefined
strings object created in the Workshop IDE. The document ViSi-Genie
Labels, Text, and Strings discusses how predefined strings objects are

created. Using predefined values makes the most efficient use of the
communication link and also minimizes the code required in the host
controller. In the ViSi Genie sample program, Stringsé contains four pages
of text. Each of this page can be displayed by using the genie.WriteObject()
function.

F/write to a predefined strings cobhject

genie.WriteStr (5, "Displaving a ‘“npredefinedinstrings ckject
delay (50007 ;

genie.WriteStr (5, "pags 1 of Strings@Ainis intentiocnallyinlef]
genie.WriteObject (GENIE OBJ STRINGS, 0x06, 0);
delay (30007 ;

genie.WriteStr (5, "pags 2 of String=a");
genie.WriteObject (GENIE OEJ STRINGS, 0x06, 1);
delay (7000) ;

genie.WriteStr (5, "page 3 of Etrings=a™);
genie.WriteObject (GENIE OEJ STRINGS, 0x06, Z);
delay (70007 ;

genlie.WriteStr (5, "page 4 of String=sae");
genie.WriteObject (GENIE_OEJ_STRINGSE, 0x06, 3);
delay (70000 ;

Note that genie.WriteStr( ) is for displaying a dynamically created string
(from the host), while genie.WriteObject( ) is for displaying a predefined
string (stored in the uSD card).

Write to a Timer

A timer object created in the Workshop IDE can be started or stopped by
the host controller using the appropriate commands. FormO of the ViSi
Genie program has a timer object, Timer0, linked to Videol. When Timer0Q
starts, Videol plays. Note that timer and sound objects always reside in
FormO.

© 2014 4D systems

Page 13 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00013/
http://www.4dsystems.com.au/appnote/4D-AN-00013/

4D SYSTEMS

4D-AN-00018

f/write to a timer

genie.WritesStr(7, "Start Timerl™):
genie,.WriteObject (GENIE OBJ TIMER, O0x00,1);
delay (50007 ;

genie.WriteStr (7, "Stop Timer0™);
genie.WriteObject (GENIE OBJ TIMER, 0x=00,07;
delay (50007 ;

genie.Writestr(7, "Timerld resumes");
genie.WriteObject (GENIE OBJ TIMER, 0x=00,1);
delay (50007 ;

genlie.WriteStr (7, "Timerl stops");
genie.WriteObject (ZENIE OBJ TIMER, 0x=00,0);
genie.WriteOkject (GENIE OEJ VIDEO, 0z01,0);: //rese
delay (50007 ;

Write to a Sounds Object

The sounds object is a special object such that there can only be one
instance of it in a Genie program. Similar to the timer object, the sounds
object is invisible and always resides in Form0. The document ViSi-Genie
Play Sound explains how to create and control a sounds object. Section
3.2.6.4 of the ViSi Genie User Reference Manual explains how to control a

sounds object when using a host controller. The code below shows how
this is done when programming an Arduino host. The ViSi Genie program
for this code has a Sounds object containing three tracks.

/fetart playing track 1

genie.WritesStr (8, "Play track 17):
genie.WriteObject (GENIE OBEJ_ SOUND, 0x00,0);
/fzet volume

genie . WriteStr (9, "volums = 1007);
genie.WriteObject (GENIE OBEJ_ SOUND, 0x01,100);
delay (70007 ;

/fetart playing track 2

genie.WritesStr (8, "Play track 27):
genie.WriteObject (GENIE OBEJ_ SOUND, 0x00,1);
ffcontrol wolume

genie.WriteStr (9, "volume = 757 ;
genie.WriteObject (GENIE OBJ SOUND, 0x01,75);
delay (7000) ;

/{pause current track (track 2}
genie.WriteStr (8, "Pause track 27);:
genie.WriteObject (GENIE OBJ SOUND, 0x02,0);://t
delay (3000) ;

S/ resume current track (track 2)
genlie.WriteStr (8, "Continue ‘ntrack 2Z7);
genie.WriteObject (GENIE OBJ SOUND, 0x03,0)://t
delay (5000) ;
/fstop current track (track 2). Track goes bad
genie.WriteStr (8, "Stop track 27);
genie.WriteObject (GENIE OBJ SOUND, 0x04,0);://t
delay (3000) ;

© 2014 4D systems

Page 14 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00006/
http://www.4dsystems.com.au/appnote/4D-AN-00006/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

4D SYSTEMS

4D-AN-00018

/fetart playving track 3

genie.Write3tr (8, "Play track 37);
genie.WriteObject (GENIE_ OBJ_ SOUND, 0x00,2);
genle.WriteStr (9, "wvolumes = 1007);
genie.WriteOkject (GENIE OBJ SOUND, 0x01,100);
delay (70007 ;

fdatop current track (track 3). Track goesz ba
genle.Write3tr (8, "Stop track 37);
genie.Writeokbject (GENIE OBJ SOUND, 0x04,0);//
delay (30007 ;

The user is encouraged to open the accompanying Arduino sketch file and
read the comments.

Write to a Spectrum Object

The spectrum object is described with more detail in ViSi-Genie Spectrum.

for(i = 0; 1 < 250; 144§

bar = random (0, 23);:
value = random (0, 99) ;
combined = (bar << 8) | wvalue:

genie.WriteObject (GENIE OBJ SPECTRUM, 0:00, combined):
delay (20) ;

Write to a Scope Object

The scope object is described in ViSi-Genie Single Trace Scope.

forii = 0; 1 < 263; 1+4+)1¢
genie.WriteObject (GENIE _0OBJ_SCOPE, 0x00, randem({0, 1&0)7;
delay (507 ;

Write to a Tank Object

The tank object is documented in ViSi-Genie Tank.

for(i = 0; 1 < 100; 1++)¢
genie.WriteObkject (GENIE OBJ TANEK, 0x=z00, 1i):
genie.WriteObject (GENIE OBJ LED DIGITS, 0x01, 1i);
delay (500 ;

Write to a User Images Object

The user images object is documented in ViSi-Genie User Images.

for(i = 0; 1 < 10; 1i++)¢
J = random (0, 3);
genie.WriteObject(GENIE_OEJ_USERIMAGES; O=00, )
genie.WriteObject (GENIE OBJ USERIMAGES, 0x=01, i)
Adelay (10007 ;

Write to a Pin Output Object
The pin output object is described in ViSi-Genie Pin Input and Output.

© 2014 4D systems

Page 15 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00027/
http://www.4dsystems.com.au/appnote/4D-AN-00028/
http://www.4dsystems.com.au/appnote/4D-AN-00026/
http://www.4dsystems.com.au/appnote/4D-AN-00034/
http://www.4dsystems.com.au/appnote/4D-AN-00033/

4D SYSTEMS

4D-AN-00018

for{i = 0; 1 < 10; 1i+4+)¢

genie.WriteObject (GENIE OBJ PINOUTPUT, 0x00, randemi{0,1)];:
genie.WriteObject (GENIE_OBEJ USER_LED, Ox01, 1):

delay (1000} ;

genie.WriteObject (GENIE OBJ USER LED, Ox01, 0);:

delay (10007 ;

genie.WriteObject (ZENIE OEJ PINOUTEUT, 0x01, 3);
genie.WriteObject (GENIE_OBEJ USER_LED, Ox0Z, Jj):

delay (50} ;
J o= 13;

Home View Tools Comms

n

AM FT:snh B w0
Genie

ngToGenieObjectsDemo [x]

Note that the pin labels of a Picaso display module are different from those
of a Diablo16 display. Since the ViSi-Genie project attached to this
application note was designed using a Picaso display, it has to be modified
if recompiled for a Diablo16 display. Reconfigure the pin assignment of a
pin output object by using the object inspector. For a uLCD-35DT target
display for example, refer to the following images.

Project

Comms Speed: 9600

Sound Buffer: 4096

%]

D]

-

-

%]

3

o
uLCD-350T
LANDSCAPE -
Display
4 b
Object Inspector s
Form | Form0 v
Ohject | PinOutputl W

Properties | Events

Property Value
Mame PinOutputl
IdleState Low
PulseDuration 0

Pin PAl

© 2014 4D systems

Page 16 of 19

www.4dsystems.com.au




4D SYSTEMS

4D-AN-00018

Object Inspector o3 Dbject Inspector 3
Form | Form@ v Form | Form0 W
Ohject | PinOutputd W Chject |PinOutput1 W
Properties | Events Properties | Events

Property Value Property Value
Mame PinOutputd « Mame RinOutput1
IdleState Low IdleState Low

PulseDuration 1000

PulseDuration ]

Pin BUS_D W Pin BLS_1 W
PAD A PAD ~
PA1l PA1
PAZ PAZ
PA3 PA3
PA4 PA4
PAS PAS
PAS PAG
PAT v H PAT hill=

BUS 0 is a pin label for Picaso displays. Change the pin assignment of
PinOutputO by choosing a new pin label from the new list provided for
Diablo16 displays. Do the same for PinOutputl. Failure to perform these
steps will result to a compilation error. Refer to the datasheet of your
display for more information.

Write to a 4D Button Object
The 4D button object is described in ViSi-Genie 4D Buttons.

for(y = 0; 3 < 4; J++14
genie.WriteObject (GENIE OBJ 4DBUTTON, i, 1);
delay (1007 ;

genie.WriteObject (GENIE CBJ 4DBUTTON, i, 0);
delay (1007 ;

Write to an Animated Button Object

The animated button object is described in ViSi-Genie Animated Button.

for(j = 0; 3 < 5; J++34
genie.WriteOkject (SENIE_OBJ ANIBUTTON, 0x00, J);
delay (100} ;

© 2014 4D systems

Page 17 of 19

www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00032/
http://www.4dsystems.com.au/appnote/4D-AN-00031/

4D SYSTEMS 4D-AN-00018

Write to a Colour Picker Object

The colour picker object is described in ViSi-Genie Color Picker.

for(y] = 0; 37 < 10; J++3¢
1 = randomil, O0=xFFFF):
genie.[ﬂrite@bject (GENIE_OBJ_COLDRPICKER, O=00, i:l;

delay (5000 ;

Write to a User Button Object

The colour picker object is described in ViSi-Genie User Button.

for(y = 0; 3 < 10; J++3¢
genie.WriteObject (GENIE OEJ USERBUTTON, 0x00, j & 0x01):
genie.WriteOkjsct (GENIE OBJ USERBUTTON, 0Oxz01, j & Ox01);

delay (500) ;

© 2014 4D Systems Page 18 of 19 www.4dsystems.com.au


http://www.4dsystems.com.au/appnote/4D-AN-00029/
http://www.4dsystems.com.au/appnote/4D-AN-00030/

4D SYSTEMS 4D-AN-00018

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be
copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current
position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

© 2014 4D Systems Page 19 of 19 www.4dsystems.com.au



