
 
 
 
 
 

ViSi-Genie Connecting a 4D Display 
to an Arduino Host  

 A
P
P
L
IC

A
TI

O
N
 N

O
TE

 

Document Date: 13th August 2015 

Document Revision: 1.01 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 2 of 38 www.4dsystems.com.au 

 Description 

This Application Note explores the possibilities provided by the ViSi-Genie 

environment in Workshop to work with an Arduino host. In this example, 

the host is an AVR ATmega328 microcontroller-based Arduino Uno board. 

The host can also be an Arduino Mega 2560 or Due. Ideally, the application 

described in this document should work with any Arduino board with at 

least one UART serial port. See specifications of Aduino boards here. 

Before getting started, the following are required: 

 Any of the following 4D Picaso display modules: 

 

uLCD-24PTU uLCD-32PTU uLCD-43(P/PT/PCT) 
uLCD-28PTU uLCD-32WPTU uVGA-III 

 

and other superseded modules which support the ViSi Genie 

environment 

 

 The target module can also be a Diablo16 display 

 

uLCD-35DT uLCD-70DT 
 

Visit www.4dsystems.com.au/products to see the latest display 

module products that use the Diablo16 processor. The display 

module used in this application note is the uLCD-32PTU, which is a 

Picaso display. This application note is applicable to Diablo16 

display modules as well. 

 

 

 4D Programming Cable or µUSB-PA5  

 micro-SD (µSD) memory card 

 Workshop 4 IDE (installed according to the installation document) 

 Any Arduino board with a UART serial port 

 4D Arduino Adaptor Shield (optional) or connecting wires 

 Arduino IDE 

 When downloading an application note, a list of recommended 

application notes is shown. It is assumed that the user has read or 

has a working knowledge of the topics presented in these 

recommended application notes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://arduino.cc/en/Products.Compare
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/uSD_2GB/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://www.4dsystems.com.au/product/4D_Arduino_Adaptor_Shield_II/
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 3 of 38 www.4dsystems.com.au 

 Content 

Description ............................................................................................. 2 

Content ................................................................................................... 3 

Application Overview .............................................................................. 4 

Setup Procedure ..................................................................................... 6 

Create a New Project ............................................................................... 7 

Design the Project ................................................................................... 7 

Add a Cool Gauge Object .................................................................. 8 

Naming of Objects ............................................................................ 9 

Add a Text String Object ................................................................... 9 

Add a Slider Object ......................................................................... 10 

Report Event .................................................................................. 11 

Add a LED Digits Object .................................................................. 12 

Add a User LED Object .................................................................... 13 

Add a Static Text Object ................................................................. 14 

Build and Upload the Project ................................................................. 14 

Identify the Messages ........................................................................... 15 

Use the GTX Tool to Analyse the Messages ..................................... 15 

Launch the GTX Tool 15 

The Slider Object ............................................................................ 16 

Change the Status of the Slider 16 

Message from a Slider 17 

Interrogate the Display for the Status of the Slider 17 

REPORT_EVENT vs. REPORT_OBJ 18 

Program the Arduino Host ..................................................................... 19 

Download and Install the ViSi-Genie-Arduino Library ...................... 19 

Understanding the Arduino Sketch Demo ....................................... 20 

Open a Serial Port and Set the Baud Rate 20 

genieAttachEventHandler( ) 22 

Reset the Arduino Host and the Display 22 

Set the Screen Contrast 23 

Send a Text String 23 

The Main Loop 24 

Receiving Data from the Display 24 

The Use of a Non-blocking Delay 24 

How to Change the Status of an Object 27 

How to Know the Status of an Object 28 

The User’s Event Handler 28 

Connect the 4D Display Module to the Arduino Host .............................. 29 

Using the New 4D Arduino Adaptor Shield (Rev 2.00) ...................... 29 

Definition of Jumpers and Headers 29 

Default Jumper Settings 30 

Change the Arduino Host Serial Port 32 

Power the Arduino Host and the Display Separately 32 

Using the Old 4D Arduino Adaptor Shield (Rev 1) ............................ 33 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 4 of 38 www.4dsystems.com.au 

Connection Using Jumper Wires ...................................................... 34 

Changing the Serial Port of the Genie Program ............................... 35 

Changing the Maximum String Length ............................................ 37 

Proprietary Information ........................................................................ 38 

Disclaimer of Warranties & Limitation of Liability ................................... 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Application Overview 

It is often difficult to design a graphical display without being able to see 

the immediate results of the application code. ViSi-Genie is the perfect 

software tool that allows users to see the instant results of their desired 

graphical layout with this large selection of gauges and meters (called 

widgets) that can simply be dragged and dropped onto the simulated 

module display. The following are examples of widgets or objects used in 

this application note. 

 

LED 
digits 

 

Slider 

 

User 
LED  

Cool 
gauge 

 

Strings 
 

Static 
text  

 

This application note shows how to create a ViSi Genie program and how 

to use the ViSi Genie library for the Arduino IDE. To achieve these 

objectives, a simple project is developed. This consists of a 4D Picaso 

module displaying six objects – a LED digits, a slider, a cool gauge, a string, 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 5 of 38 www.4dsystems.com.au 

a user LED, and a static text (label). Several of these objects interact with 

an Arduino host in a manner illustrated below. 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

To recreate the application described in this demo, the user first creates a 

ViSi Genie program in the 4D Workshop IDE and downloads it to a 4D 

display module. The user can also download and open the already-

completed ViSi Genie program from this Github repository: 

 

https://github.com/4dsystems/ViSi-Genie-Arduino-Library 

 

The Arduino host, on the other hand, is programmed using the Arduino 

IDE. The latest ViSi-Genie-Arduino library files are in also in the Github 

repository referred to above. 

 

This application note was written to guide the user in setting up a working 

system in the shortest possible time and to cover the important aspects in 

the simplest possible manner. For topics that require further explanations, 

references are pointed out to the user for further study. 

 

 

 

The dial of the cool 

gauge constantly moves 

The host sends a text 

string to the display 

 

 Text string is displayed here 

2. The slider sends 

its value to the host 

3. The host 

receives the value 

and processes it 

 

 

1. User moves 

the slider 

The user LED changes its 

state according to the 

value written to it by the 

host 

4. The host sends a 

value to update the 

LED digits 

The host constantly 

updates the status 

of the cool gauge 

5. The LED digits 

is updated 

The host constantly 

monitors and toggles 

the state of the user 

LED 

https://github.com/4dsystems/ViSi-Genie-Arduino-Library


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 6 of 38 www.4dsystems.com.au 

Note: The latest version of the ViSi-Genie-Arduino library (as of July 2014) 

is  

 

 
 

The library version can be checked by opening the library file 

“genieArduino.h”. 

 

 
 

Instructions for installing the library are in the section “Program the 

Arduino Host”. Users are encouraged to always update to the latest 

version. 

 

 

 

 

Setup Procedure 

The user can download the ViSi-Genie project example from:  

 

https://github.com/4dsystems/ViSi-Genie-Arduino-Library 

 

For instructions on how to launch Workshop 4, how to open a ViSi-Genie 

project, and how to change the target display, kindly refer to the section 

“Setup Procedure” of the application note 

ViSi-Genie Getting Started - First Project for Picaso Display Modules (for 

Picaso) 

or 

ViSi-Genie Getting Started - First Project for Diablo16 Display Modules (for 

Diablo16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 

https://github.com/4dsystems/ViSi-Genie-Arduino-Library
http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 7 of 38 www.4dsystems.com.au 

Create a New Project 

For instructions on how to create a new ViSi-Genie project, please refer to 
the section “Create a New Project” of the application note 
 
ViSi-Genie Getting Started - First Project for Picaso Display Modules (for 
Picaso) 
or 
ViSi-Genie Getting Started - First Project for Diablo16 Display Modules (for 
Diablo16). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design the Project 

Everything is now ready to start designing the project. Workshop 4 

displays an empty screen, called Form0. A form is like a page on the 

screen. The form can contain widgets or objects, like sliders, displays or 

keyboards. Below is an empty form. 

 

 

 

At the end of this section, the user will able to create a form with six 

objects. The final form will look like as shown below, with the labels 

excluded. 

 

 

 

 

 

 

 

 

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 8 of 38 www.4dsystems.com.au 

 

 
 

 

The procedures for adding each of these objects will now be discussed. 

 

 

Add a Cool Gauge Object 

The cool gauge constantly receives values from the Arduino host. The dial 

of the cool gauge will constantly move to correspond with the received 

values. To create a cool gauge, go to the Gauges pane then click on the 

cool gauge icon. 

 

 

Click on the WYSIWYG (What-You-See-Is-What-You-Get) screen to place 

the cool gauge. The WYSIWYG screen simulates the actual appearance of 

the display module screen. 

 

 
 

The object can be dragged to any desired location and resized to the 

desired dimensions. The Object Inspector on the right part of the screen 

displays all the properties of the newly created cool gauge object named 

Coolgauge0.  

  
 

LED 

digits C 

C Slider 

Cool 

gauge 

Strings 

C 

User LED 

Static text 

label 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 9 of 38 www.4dsystems.com.au 

Feel free to experiment with the different properties. Take note of the 

maximum and minimum values. These determine the range of values that 

can be sent from the Arduino host to the cool gauge. To know more about 

gauges, refer to ViSi-Genie Gauges. 

Naming of Objects 

Naming is important to differentiate between objects of the same kind. For 

instance, suppose the user adds another cool gauge object to the 

WYSIWYG screen. This object will be given the name Coolgauge1 – it being 

the second cool gauge in the program. The third cool gauge will be given 

the name Coolgauge2, and so on. An object’s name therefore identifies its 

kind and its unique index number. It has an ID (or type) and an index. 

 

Coolgauge0 

 

 

 

It is important to take note of an object’s ID and index. When 

programming in the Arduino IDE, an object’s status can be polled or 

changed if its ID and index are known. The process of doing this will be 

shown later. 

Add a Text String Object 

The display module can print text strings received from the Arduino host 

on the screen. To create a text string object, go to the Labels pane then 

click on the strings icon. 

 

 

  
 

Click on the WYSIWYG screen to place the string. Again, the WYSIWYG 

screen simulates the actual appearance of the display module screen. 

 

 
 

The space inside the red box will be the space occupied by the text string 

to be displayed. The object can be dragged to any desired location and 

resized to the desired dimensions. The Object Inspector on the right part 

of the screen displays all properties of the newly created strings object 

named Strings0.  

 

 

Object index 
Object ID 

http://www.4dsystems.com.au/appnote/4D-AN-00008/


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 10 of 38 www.4dsystems.com.au 

To add background and foreground colours for the text string, edit the 

properties as shown below. 

 
 

Choose the desired colour and click OK. 

 
 

Do the same for the foreground colour. 

 

 
 

When done, the form should look similar to that shown below. 

 
 

Add a Slider Object 

The slider sends a message to the Arduino host when its status has 

changed. To add a slider, go to the Inputs pane and click on the slider icon. 

 

 
 

Click on the WYSIWYG screen to place a slider object. Drag the object to 

any desired location.  

 

 

 

 
click 

 

 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 11 of 38 www.4dsystems.com.au 

 
 

In the Object Inspector, the minimum value is 0 and maximum is 100 by 

default. 

 

 
 

 

 

Report Event 

An object can report its current status independently without being asked 

by the Arduino host. A slider, for example, can be configured to report its 

current status to the host each time it is moved. To do this, click on the 

Events tab in the object inspector and click on the  symbol in the 

OnChanged line. 

 

 
 

The On event selection window appears. Select Report Message and click 

OK. 

  
 

 

 C 

C 

C 

 

 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 12 of 38 www.4dsystems.com.au 

The Events pane is now updated. 

 

 
 

Now every time the slider is moved or its status has changed, it sends a 

message to the host controller.  To be more exact, the slider will send a 

report message when the stylus or finger moving it is lifted off the screen. 

Selecting the OnChanging event, on the other hand, causes the slider to 

send messages while it is being moved (the moving finger or stylus is not 

lifted off yet). To learn more about the onChanged and OnChanging 

events, read the application note ViSi-Genie onChanging-and-onChanged-

Events.  

 

The message or data being sent has a format which the Arduino host must 

understand. A section of this application note is dedicated to explaining 

this format (called the ViSi-Genie Communication Protocol) used by the 

display module. Advanced users may refer to the ViSi-Genie User 

Reference Manual.  

 

Add a LED Digits Object 

The LED digits object will display values received from the Arduino host. To 

add a LED digits object, go to the Digits pane and select the first icon. 

 

 
 

Click on the WYSIWYG screen to place it.  

 

 
 

 

 

 

 

 

 

C 

http://www.4dsystems.com.au/appnote/4D-AN-00002/
http://www.4dsystems.com.au/appnote/4D-AN-00002/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 13 of 38 www.4dsystems.com.au 

Go to the Object inspector and set the following property values. 

 

  
 

The updated appearance of the LED digits object is shown below. 

 

 
 

Add a User LED Object  

To add a user LED object, go to the Digits pane and select the user LED 

icon. 

 
 

Click on the WYSIWYG screen to place it.  

 
 

The properties of Userled0 are: 

 
 

 

 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 14 of 38 www.4dsystems.com.au 

Add a Static Text Object 

The Static Text object is under the Backgrounds pane. 

  
 

Click on the WYSIWYG screen to place it.  

 
 

The property “Caption” defines the text to be displayed by Statictext0. The 

properties of Statictext0 are: 

  

 

 

Build and Upload the Project 

For instructions on how to build and upload a ViSi-Genie project to the 

target display, please refer to the section “Build and Upload the Project” 

of the application note  

 

ViSi-Genie Getting Started - First Project for Picaso Display Modules (for 

Picaso) 

or 

ViSi-Genie Getting Started - First Project for Diablo16 Display Modules (for 

Diablo16). 

 

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly 

used as examples, but the procedure is the same for other displays. 

 

 

 

 

 

 

 

 

 

 

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 15 of 38 www.4dsystems.com.au 

Identify the Messages 

The display module is going to generate and send messages to the host. 

This section explains to the user how to interpret these messages. An 

understanding of this section is necessary for the user to be able to 

properly program the host controller. The ViSi-Genie User Reference 

Manual is recommended for advanced users. 

 

Use the GTX Tool to Analyse the Messages 

Using the GTX or Genie Test eXecutor tool is the first option to get the 

messages sent by the screen to the host. The GTX tool is a part of the 

Workshop 4 IDE. It allows the user to receive, observe, and send messages 

from and to the display module. It is an essential debugging tool. 

Launch the GTX Tool 

Under Tools click on the GTX tool button. 

 

 

A new window appears, with the form and objects created previously. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 C 

 

 C 

 C  C 

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 16 of 38 www.4dsystems.com.au 

The Slider Object 

Change the Status of the Slider 

In the GTX tool window, move the slider and press Set. On the display 

module, note that the slider has moved.  

 

 

Also, messages are sent to and received from the display module. 

 

 
 

The white area on the right displays  

 in green the messages sent to the display module 

 and in red the messages received from the display module 

The actual message bytes are those inside the brackets. These values are in 

hexadecimal. The figure preceding the actual message is the computer 

time at which the message is sent. A label is also included to tell the 

observer what the message represents. 

 

 

 

 
 

The message sent is formatted according to the following pattern: 

 

Command 
Object 
Type 

Object 
Index 

Value 
MSB 

Value  
LSB 

Checksum 

01 04 00 00 1F 1A 

WRITE_OBJ Slider First 0x001F  

 

The message stands for “Write to the first slider object on the display 

module the value 0x001F.” Converting the hexadecimal value 0x001F to 

decimal will yield the value 31.  

 

The checksum is a means for the host to verify if the message received is 

correct. This byte is calculated by XOR’ing all bytes in the message from 

(and including) the CMD or command byte to the last parameter byte. 

Then, the result is appended to the end to yield the checksum byte. If the 

message is correct, XOR’ing all the bytes (including the checksum byte) will 

give a result of zero. Checking the integrity of a message using the 

 

 

message time 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 17 of 38 www.4dsystems.com.au 

checksum byte is handled automatically by the Arduino host thru the ViSi-

Genie-Arduino library.  

 

ACK = 0x06 as shown below 

 

 
 

is an acknowledgment from the display module which means that it has 

understood the message. 

 

Message from a Slider 

Remember that the slider was configured to Report a Message when its 

status has changed. Now move the slider on the display module with a 

stylus or a finger. Observe the message sent by the display module to the 

PC. 

 

 
 

The message from slider object is formatted according to the following 

pattern: 

Command 
Object  
Type 

Object 
Index 

Value 
MSB 

Value  
LSB 

Checksum 

07 04 00 00 42 41 

REPORT_EVENT Slider First 0x0042  

Interrogate the Display for the Status of the Slider 

Suppose the slider object is not configured to report an event when it has 

moved. The host or the PC can ask the display module for the value of the 

slider by sending a message. Now on the display module move the slider 

randomly. In the GTX tool window press Query. 

 

 
 

Observe the message area. 

 

 
 

The PC sends a request message. The display module replies with the 

current value of the slider object. The messages sent and received are 

formatted according to the following patterns. 

 

 

 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 18 of 38 www.4dsystems.com.au 

Command 
Object  
Type 

Object 
Index 

Value 
MSB 

Value  
LSB 

Checksum 

00 04 00 - - 04 

READ_OBJ Slider First Not applicable  

05 04 00 00 59 58 

REPORT_OBJ Slider First 0x0059  

 

REPORT_EVENT vs. REPORT_OBJ 

It is important to take note of the difference between REPORT_EVENT and 

REPORT_OBJ. REPORT_EVENT occurs if the user selects the event of a 

widget in Workshop to be "Report Message". There is no need for the host 

to ask the display module for the value of the slider. The slider 

independently sends its current status since it was configured to do so. 

Whereas REPORT_OBJ is a result of the user doing a read of an object from 

the host, using the Read Object function. 

 

Experimentation with the different objects using the GTX tool is now left to 

the user as an exercise. The following tables are shown below for 

reference. Consult the ViSi-Genie User Reference Manual for more 

information.  

 

 

 

 
This table is found in section 2.1 of the ViSi-Genie User Reference Manual . 

 

  
 

 

This table is found in section 3.3 of the ViSi-Genie User Reference Manual. 

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 19 of 38 www.4dsystems.com.au 

Program the Arduino Host 

This section discusses how to program the Arduino host to make it work 

with the display module. It is assumed that the user has a basic 

understanding of how the Arduino host works and how to program in the 

Arduino IDE. Inexperienced users may need to frequently refer to the 

Arduino website for more information. 

 

Download and Install the ViSi-Genie-Arduino Library 

The ViSi-Genie-Arduino library files are located here: 

 

https://github.com/4dsystems/ViSi-Genie-Arduino-Library 

 

On the right side of the github page, click on the Download ZIP button. 

Save the zip file and extract its contents to the folder where additional 

Arduino libraries are saved. 

 

 
 

Here is a link to a tutorial on installing additional libraries in the Arduino 

IDE. 

 

http://arduino.cc/en/Guide/Libraries 

 

In Windows for example, the library files will be saved here: 

 

 
 

Remember to restart the Arduino IDE after installing the libraries. The 

genieArduino demo sketch should be accessible under the File – Examples 

menu.  

 C 

https://github.com/4dsystems/ViSi-Genie-Arduino-Library
http://arduino.cc/en/Guide/Libraries


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 20 of 38 www.4dsystems.com.au 

 
 

Understanding the Arduino Sketch Demo 

Open the genieArduino_Demo sketch. Note that comments have been 

added to the code to help the user. Additional explanations are now given 

below. 

 

 

Open a Serial Port and Set the Baud Rate 

In the setup (), the line shown below sets the data rate in bits per 

second (baud) for serial data transmission of the port Serial0. 

 

 
 

The next line indicates that the ViSi-Genie-Arduino library will use the port 

Serial0 for communicating with the display. 

 

 
 

Port Serial0 cannot be used therefore for any other purposes such as 

talking to the serial monitor. Logically, the 4D display should also 

communicate with the Arduino host at the same baud rate. To check the 

baud rate of the ViSi Genie program go to the project menu in Workshop. 

 

 
 

To change the baud rate of the ViSi Genie program, simply click on the 

drop down arrow. 

 C 

 

 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 21 of 38 www.4dsystems.com.au 

 
 

Choose the desired baud rate (9600 bps for instance) and download the 

program to the display module again. Now change the baud rate of the 

Arduino host as well. 

 

 
 

For Arduino boards with four hardware serial ports (like the Due and Mega 

2560), the user can choose another port to talk to the display. To use 

Serial2 at 9600 bps for example:  

 

 
 

To use a software serial port,  

 
 

 

 C 

 C 

 

 

 

 

 

 C 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 22 of 38 www.4dsystems.com.au 

Refer to the product page of your Arduino board to know the pins that can 

be used for a software serial port. The section “Connect the 4D Display 

Module to the Arduino Host” towards the end of this application note 

shows how the TX and RX pins of the host are connected to those of the 

display. The following are the SoftwareSerial baud rates that were tested 

to work with 4D displays using the basic application that comes with this 

application note. 

 

Processor Tested SoftwareSerial baud rates (bps) 

Picaso 4800, 9600, 14400, 19200, 31250, 38400 

Diablo16 14400, 19200, 31250 

 

As of writing, the latest version of the SoftwareSerial is documented to 

work at 115200 bps. This is easily demonstrated to be false as any 

interrupt (e.g. the timer interrupt that updates millis()) will result in 

software serial being unable to ‘extract’ the current byte being read. Thus 

the maximum, possibly reliable baud rate is 57600 bps. Therefore, since 

the library currently uses ‘calculated’ baud rates, other than the earlier 

fixed lookup table, users should be able to successfully test and use valid 

baud rates (lower than 57600 bps) other than those specified in the table 

above. Note that if other interrupts are in use the maximum baud rate may 

need to be lowered further. Users are encouraged to always use a 

hardware serial port of the Arduino host for talking to a 4D display. Refer 

to the Arduino website for more information on the issues and limitations 

of the SofwareSerial library. 

 

N.B.: Again, remember that the baud rate of the display module should 

match that of the Arduino host. Also, when a serial port has been set to 

communicate with the display, it cannot be used for talking to other 

devices. 

genieAttachEventHandler( ) 

 

 
This function is used to tell the library the name of the function used in the 

user’s code space, so it knows what to call when an event is received and it 

needs processing. Full explanation is given in the section “Receiving Data 

from the Display”. 

 

Reset the Arduino Host and the Display 

It is essential that the display is ‘ready’ before the host starts sending 

commands. To satisfy this condition, the host program can be made to 

reset the display and wait for some time (for the display to start up and 

initialize properly) before it starts sending commands. This sequence is 

ideally placed at the start of the host program. To illustrate: 

 

 
 

 

If using the new 4D Arduino Adaptor Shield (Rev 2) 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 23 of 38 www.4dsystems.com.au 

Note that the GPIO pin D4 of the Arduino host is used here for resetting 

the display. When using the new 4D Arduino Adaptor Shield (Rev 2.00 

written on the PCB), simply connect RES to AR in jumper J1. See the section 

“Connect the 4D Display Module to the Arduino Host”. If using the old 4D 

Arduino Adaptor Shield (Rev 1), simply change the code above. Use pin 2 

instead of pin 4. 

 

 

If using the old 4D Arduino Adaptor Shield (Rev 1) 

 

If using jumper connecting wires, connect the RESET pin of the display 

module to the D4 pin of the Arduino with a 1kohm series resistor in 

between (see the section “Connect the 4D Display Module to the Arduino 

Host”), and modify the code as shown below. 

 

 

If using jumper wires 

Note that the logic state for resetting the display is reversed if not using 

any of the 4D Arduino Adaptor Shields. It is now 0 instead of 1. This is 

because the display module’s RESET pin is directly connected to D4 via a 

1kohm resistor. If using a 4D Arduino Adaptor Shield, the display module’s 

RESET pin is switched by the D4 pin via a transistor. 

 

Set the Screen Contrast 

To make sure that the LCD is turned on, write 

 
A contrast value of 1 can be too low for displays that support contrast 

levels from 0 to 15. Use a higher contrast level value for these displays. 

Read further below for more information. 

 

To turn off the display, write 

 
 

Most Picaso display modules can only have a value of 1 or 0 (on or off) 

for contrast. The uLCD-43P/PT/PCT modules and Diablo16 display 

modules, however, support contrast values from 0 to 15, which makes 

power saving possible. This function does not apply to uVGA-II/III 

modules. Check the datasheet of your display for more information. 

 

Send a Text String 

To write to a string object on the display, write, 

 
 

The first argument of the member function WriteStr() is the index of the 

string object to which the string will be sent. The second argument is a 

null-terminated character array. GENIE_VERSION is a string constant 

defined in the ViSi-Genie-Arduino library. 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 24 of 38 www.4dsystems.com.au 

The Main Loop 

This is now the main part of the program. Three variables are declared and 

used here – waitPeriod for checking how much time has elapsed, 

gaugeAddVal holds the increment or decrement value of the cool 

gauge, and gaugeVal holds the value to be sent to the cool gauge. 

 

 
 

Receiving Data from the Display 

The function below receives and queues the data received from the 

display. 

 

 
 

Another function (to be written by the user) is needed to process the 

received data. The function genie.DoEvents() will call this user-defined 

function internally. A diagram of how data from the display is received and 

processed is now shown on the next page. 

 

The Use of a Non-blocking Delay 

Note how the main loop uses a non-blocking delay to be able to execute 

other instructions besides genie.DoEvents(). Ideally, genie.DoEvents() is 

the main task and it should be called as often as possible such that all 

events from the display are processed immediately. The main loop can be 

represented with the flow chart in the right column. This flow chart is the 

recommended model for Arduino programs communicating with a 4D 

display. The use of the function delay() is discouraged since events from 

the display will not be processed in “real time”. Also, the time duration for 

the execution of other instructions/subroutines besides genie.DoEvents() 

should be kept as short as possible. 

  



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 25 of 38 www.4dsystems.com.au 

 

Is the value of the current 

timer greater than that of 

waitPeriod? 

Start 

waitPeriod = current timer value 

Execute genie.DoEvents() 

Execute some instructions 

Change the value of waitPeriod to a 

future value 

Yes 

No 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 26 of 38 www.4dsystems.com.au 

  



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 27 of 38 www.4dsystems.com.au 

To sum it up, the display sends information to the Arduino, whether it is by 

result of a Reported Message or from a Read Object. The Arduino is 

executing its code in the main loop. It comes to the 

genie.DoEvents() function and calls the ViSi-Genie-Arduino library. 

The Arduino 'sees' there is some information available and stores it in a 

queue. When the Arduino processes the queue, the first event is taken out 

of the queue and processed based on the commands set out in the user-

defined Event Handler function. The Arduino then returns to executing any 

other functions in its main loop, and then jumps to the start of the loop 

again. 

How to Change the Status of an Object 

To change the status of the cool gauge, use the function indicated below. 

 

 
 

GENIE_OBJ_COOL_GAUGE is the object’s ID or type, 0x00 is the index, 

and gaugeVal is the value to be written to the object. Note that 

gaugeVal is incremented or decremented by gaugeAddVal. Also 

gaugeVal is limited to a value between and including 0 and 99. 

Remember that the cool gauge in the display module has minimum and 

maximum values of 0 and 100. 

 

It is possible to change the status of any object as long as the object ID and 

index are known. The image below lists the object types or IDs already 

defined in the ViSi-Genie-Arduino library. All of the objects can be written 

to except the GENIE_OBJ_KEYBOARD and GENIE_OBJ_STATIC_TEXT. 

 

  
 

This list is found in the library file “genieArduino.h”. 

 

 
The latest library may include more objects. Thus, the user must always 

update to the latest version. 

 C 

 C 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 28 of 38 www.4dsystems.com.au 

How to Know the Status of an Object 

The Arduino can interrogate the display module for the status of a certain 

object. For instance, read the current status of the user LED using the 

command indicated below. 

 

 
 

The status of any object can be read as long as the object ID and index are 

known. The display module will then reply with a message containing the 

object’s current status. This message is received and queued by 

genie.DoEvents() and dequeued and evaluated by the user’s event 

handler. 

The User’s Event Handler 

First, the union Event of the genieFrame type is declared.  

 

 
 

The genieFrame union type is defined in the ViSi-Genie-Arduino library. 

It contains the structure reportObject, which is of the 

FrameReportObj type. 

 
 

The FrameReportObj structure type contains five bytes, each 

representing a byte to be received from the display module. To illustrate: 

 

 
 

The next step now is to take an event or a message from the event queue 

of the genie.DoEvents() function. Observe the correct syntax. 

 

 
 

Then break down the message into its components. A part of the sketch 

demonstrates how this is done. 

 

 

 

 

 C 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 29 of 38 www.4dsystems.com.au 

 
 

Here is a list of Genie command type constant definitions taken from the 

genieArduino.h file of the ViSi-Genie-Arduino library. 

 

 
 

In conclusion the user’s event handler evaluates each byte of a message 

(command, object, object index, and value), and then makes a decision 

according to the result of this evaluation. 

 

Connect the 4D Display Module to the 

Arduino Host 

This section discusses several ways of connecting the display module to the 

Arduino host. The user has the option of using a 4D Arduino Adaptor Shield 

(there are two versions of this – the old and the new) or jumper wires.   

Using the New 4D Arduino Adaptor Shield (Rev 2.00) 

Definition of Jumpers and Headers 

 

 

Jumpers 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 30 of 38 www.4dsystems.com.au 

The 5-way cable coming from the display should be connected to H1. 

When the Arduino host cannot supply enough power to the display, the 

display can be powered separately thru H2 (jumper J2 should be 

configured accordingly). 

 

J1 is for choosing which pin resets the display – either the RES pin of H2 or 

pin D4 of the Arduino host. J2 is for choosing the power supply source for 

the display – either the Arduino host or the programming module 

connected to H2 (if the Arduino host power supply is inadequate). The 

middle pin of J3, RX, goes to the TX pin of the display and must be tapped 

to the correct RX pin of the Arduino host. The middle pin of J4, TX, goes to 

the RX pin of the display and must be tapped to the correct TX pin of the 

Arduino host. 

 

Default Jumper Settings 

The image on the right column shows the default settings for jumpers J1 to 

J4.  

 Pin D4 of the Arduino host resets the display (J1 shorts pins RES and 

AR).  

 The Arduino host powers the display (J2 shorts pins PWR and AR). 

 The Arduino host talks to the display thru port Serial0. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

J1 J2 J3 J4 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 31 of 38 www.4dsystems.com.au 

Default Settings for J3 and J4 

Jumpers J3 and J4 are configured, by default, to connect RX (TX0 of the 

display module) to D0 (RX0 of the Arduino) and TX (RX0 of the display 

module) to D1 (TX0 of the Arduino). Communication in this case is thru 

Serial0 of the Arduino host and COM0 of the display module.  

 

 

 

 

 

 

 
 

 

 

 

 

 

The Arduino Host Powers the Display 

The following are images wherein the display module is powered by the 

Arduino host. Note that the power supply must be able to provide enough 

current for both the display module and the Arduino host. Refer to your 

display module’s datasheet for the specified supply current. 

Using the USB cable (the Arduino host powers the display): 

 
 

 

Using the jack(the Arduino host powers the display): 

 
 

 

 

 

 

 

 

RX0 

Display 

module 
TX0 

4D Arduino 

Adaptor Shield 

Arduino host 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 32 of 38 www.4dsystems.com.au 

Change the Arduino Host Serial Port 

To use the other hardware serial ports of the Mega or Due, remove the 

jumper connectors of J3 and J4 and connect the display TX0 and RX0 pins 

to the desired Arduino serial port TX and RX pins using jumper wires. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Power the Arduino Host and the Display Separately 

If the display requires a higher current to operate (the uLCD-70DT for 

instance), it is not advisable to power it off the 5V out of the Arduino host. 

To power the display separately from the Arduino board, set J2 as shown 

below.  Power will then be supplied to the display thru H2. 

 

 
 

H2 is for the 4D USB Programming Cable or µUSB-PA5 (power supply 

source), and H1 is for the display module. The following image shows how 

the Arduino host and the 4D display are connected when they are powered 

separately.  

 

 

 

4D Arduino 

Adaptor Shield 

Arduino host 

Display 

module 
TX0 

RX1, RX2, RX3, or 

software serial RX pin 

H2 H1 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 33 of 38 www.4dsystems.com.au 

Complete setup (host and display are powered separately): 

 
 

Note that the display module cannot be programmed thru the µUSB-PA5 in 

this setup since H2 transfers power only. Before programming the display 

module, disconnect it first from the Arduino Adaptor Shield. Likewise, 

before programming the Arduino host, make sure that it is not connected 

to the display module. Do this when the communication is thru Serial0 

(Arduino host) and COM0 (4D display). Always double check the 

orientation of the connections. 

 

 

 

Using the Old 4D Arduino Adaptor Shield (Rev 1) 

 

 
 

The old 4D Arduino Adaptor Shield (Rev1) uses digital pin D2 for resetting 

the display. The reset routine of the Arduino sketch must be modified 

accordingly. 

 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 34 of 38 www.4dsystems.com.au 

Connection Using Jumper Wires 

 

 

 

 

Note that the display here is powered off the 5V out of the Arduino board. 

Pin D4 of the host will also reset the display (logic of the reset routine must 

be inverted). Connect the 5V and GND pins of the display to an external 5V 

power supply source if a separate supply is needed. The reset pin, RES, of 

the display can also be connected to another GPIO pin of the Arduino host 

and the sketch can be modified accordingly. 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 35 of 38 www.4dsystems.com.au 

Changing the Serial Port of the Genie Program 

A ViSi-Genie program uses the serial port COM0 by default. This is also the 

serial port through which the display is programmed by Workshop. The 

datasheet for the uLCD-32PTU, for example, shows the H1 I/0 Expansion 

header and the programming header. 

 

 

  

As the reader may have already perceived, the TX and RX pins on the 

programming header are the same pins as TX0 and RX0 on the H1 I/O 

expansion header. In Workshop it is possible to change the serial port 

being used by a ViSi-Genie program. Instructions for doing this are as 

follows.  

 

Under the File menu, select Options then select the Genie tab. 

 

 C 

 

 

75 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 36 of 38 www.4dsystems.com.au 

For Picaso displays there are only two available serial ports – COM0 and 

COM1. To use COM1, click on the button next to it then click OK.  

 

 
 

 
 

Compile and download the program to the display. All subsequent ViSi-

Genie programs will now use COM1. Also, the TX and RX pins of the host 

shall now be connected to the RX and TX pins of COM1 instead of COM0. 

 

 
 

The Diablo16 processor has four serial ports – COM0, COM1, COM2, and 

COM3. The TX and RX pins of COM0 are fixed and are used for 

programming the processor. Again, COM0 is also the default serial port 

used by a ViSi-Genie program. The TX and RX pins for COM1, COM2, and 

COM3, on the other hand, are ‘mappable’ – that is, they can be configured 

to be ‘mapped’ out to any (but not all) of the GPIO pins. The table below 

shows the GPIO pins that can be used as TX and RX pins for COM1, COM2, 

and COM3. This table is taken from the Diablo16 datasheet. 

 

 
 

Workshop, however, only provides the option of using COM1 as an 

alternative to COM0.  To use the GPIO pins PA13 and PA12 as RX and TX 

pins respectively, specify them under Diablo com1 Pins then click OK. 

 

 C 

 C 

http://www.4dsystems.com.au/product/DIABLO16_OGM/


4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 37 of 38 www.4dsystems.com.au 

 
 

 
 

Compile and download the program to the display. All subsequent ViSi-

Genie programs with a Diablo16 target display will now use COM1 with 

the specified TX and RX pins. Also, the TX and RX pins of the host shall 

now be connected to the specified RX and TX pins of COM1. If using a 

uLCD-35DT for example, 

 

 
 

Consult the datasheet of your display for more information. 

Changing the Maximum String Length 

The host can dynamically write to the strings object of a ViSi-Genie 

program. The default maximum length of a character array that can be 

dynamically written to a strings object is 75 characters (excluding the 

overhead bytes). Worskhop provides an option for increasing this limit.  

Under the File menu, select Options then select the Genie tab. Here the 

maximum length is set to 200 characters. Click OK.  

 

 
 

Compile and download the program to the display. All subsequent ViSi-

Genie programs will now have this configuration. 

 

 

 

 

 

  C 

C 



4D SYSTEMS  4D-AN-00017 
 

 
© 2015 4D Systems Page 38 of 38 www.4dsystems.com.au 

Proprietary Information 

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be 

copied or disclosed without prior written permission.  

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The 

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current 

position with 4D Systems. 

All trademarks belong to their respective owners and are recognised and acknowledged. 

 

Disclaimer of Warranties & Limitation of Liability 

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without 

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose. 

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. 

It is your responsibility to ensure that your application meets with your specifications. 

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages 

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be 

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages. 

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments 

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life 

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental 

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities. 

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend, 

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or 

otherwise, under any 4D Systems intellectual property rights. 


