

A
P
P
L
IC

A
TI

O
N
 N

O
TE

ViSi-Genie Displaying Temperature
Values from an Arduino Host

4D SYSTEMS

TURNING TECHNOLOGY INTO ART

Document Date: June 22nd, 2014

Document Revision: 1.0

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 2 of 15 www.4dsystems.com.au

Description

This application note explains how to use a 4D display module in displaying

temperature values received from a host controller. The host is an AVR-

ATmega328-microcontroller-based Arduino Uno board, to which an LM35

temperature sensor is connected. The host can also be an Arduino Mega

2560 or Due. Ideally, the applications described in this document should

work with any Arduino board with at least one UART serial port. See

specifications of Aduino boards here.

This application note requires:

 Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-32PTU uLCD-43(P/PT/PCT)
uLCD-28PTU uLCD-32WPTU uVGA-III

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 display

uLCD-35DT uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which is a

Picaso display. This application note is applicable to Diablo16

display modules as well.

 4D Programming Cable or µUSB-PA5

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 Any Arduino board with a UART serial port

 4D Arduino Adaptor Shield (optional) or connecting wires

 Arduino IDE

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

http://arduino.cc/en/Products.Compare
http://arduino.cc/en/Products.Compare
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/uSD_2GB/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 3 of 15 www.4dsystems.com.au

Content

Description ... 2

Content... 3

Application Overview .. 3

Setup Procedure ... 4

Create a New Project ... 5

Create a New Project ... 5

Design the Application .. 5

Create a LED Digits Object.. 6

Naming of Objects.. 7

Add a Static Text .. 8

Build and Upload the Project ... 9

Writing the Host Code ... 9

The Main Loop – Writing Data to the Display 10

Set Up the Project ... 10

Connect the LM35 Temperature Sensor to the Arduino 11

The Complete Project ... 12

Proprietary Information .. 15

Disclaimer of Warranties & Limitation of Liability 15

Application Overview

The application developed in this document works in a manner illustrated

in the diagram shown on the next page.

First, temperature is converted to an electrical signal (voltage to be exact)

by an LM35 temperature sensor. The LM35 temperature sensor used in

this application has a scale factor of 10mV per degree Celsius. It is

configured to sense temperature values from 2 to 150 degrees Celsius.

Users who intend to read temperature values outside this range may need

to consult the datasheet for more information.

Next, the voltage output of the LM35 temperature sensor is sampled by

pin A0 of the Arduino Uno. A0 is one of the six pins of the Arduino Uno

capable of performing analogue to digital signal level conversion – or ADC.

Given the scale factor, the voltage level output of the LM35 temperature

sensor can now be converted back to a temperature reading – both in

degrees Celsius and degrees Fahrenheit. These temperature values are

now sent to the display module.

The Arduino host is programmed in the Arduino IDE to perform ADC,

convert digital signal levels to temperature readings, and send the

temperature readings to the display module. The display module, on the

other hand, is programmed in Workshop ViSi Genie environment to display

the temperature readings.

This application note comes with a ViSi Genie program and an Arduino

sketch. The process of creating the ViSi Genie program is first shown. Then

the flow of the Arduino sketch is discussed. The sketch can be used to

develop more complex applications. The last section shows how the

display, Arduino host, and LM35 temperature sensor are connected.

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 4 of 15 www.4dsystems.com.au

LM35 Temperature sensor

Arduino host

4D display module

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note:

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

Temperature

voltage

message

Temperature is

converted to

voltage levels

Digital signal levels

are converted back to

temperature readings

and sent to the display

module

The display module

receives and displays

the temperature

readings.

Voltage levels are

sampled and

converted to digital

signal levels

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 5 of 15 www.4dsystems.com.au

Create a New Project

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

Design the Application

Everything is now ready to start designing the project. Workshop 4

displays an empty screen, called Form0. A form is like a page on the

screen. The form can contain widgets or objects, like sliders, displays or

keyboards. Below is an empty form.

At the end of this section, the user will able to create a form with four

objects. The final form will look like as shown below, with the labels

excluded.

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 6 of 15 www.4dsystems.com.au

Create a LED Digits Object

The LED digits object will display values received from the Arduino host. To

add a LED digits object, go to the Digits pane and select the first icon.

Click on the WYSIWYG (What-You-See-Is-What-You-Get) screen to place a

LED digits object. The WYSIWYG screen simulates the actual appearance of

the display module screen.

The object can be dragged to any desired location and resized to the

desired dimensions. The Object Inspector on the right part of the screen

displays all the properties of the newly created LED digits object named

Leddigits0.

Static

text
LED digits

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 7 of 15 www.4dsystems.com.au

Feel free to experiment with the different properties. To know more about

digital display objects, refer to ViSi-Genie Digital Displays. Now set the

following properties as indicated below.

The WYSIWYG screen is updated. The user can also set the preferred

height and width of the object.

Naming of Objects

Naming is important to differentiate between objects of the same kind. For

instance, suppose the user adds another LED digits object to the WYSIWYG

screen. This object will be given the name Leddigits1 – it being the second

LED digits in the program. The third LED digits object will be given the

name Leddigits2, and so on. An object’s name therefore identifies the

object’s kind and unique index number. It has an ID (or type) and an index.

Coolgauge0

Object index
Object ID

http://www.4dsystems.com.au/appnote/4D-AN-00012/

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 8 of 15 www.4dsystems.com.au

It is important to take note of an object’s ID and index. When

programming in the Arduino IDE, an object’s status can be polled or

changed if its ID and index are known. The process of doing this will be

shown later.

Add a Static Text

Static text objects are useful for labelling purposes. As the name implies,

the status of these objects cannot be changed when the program runs. To

add a static text, go to the Labels pane and click on the static text icon.

Click on the WYSIWYG screen to place the object.

In the Object Inspector, change the caption to degrees Celsius, and

increase the font size.

When done, the WYSIWYG screen should look similar to the one shown

below.

Repeat the process described above to create the LED digits and static text

objects for the temperature readings in degrees Fahrenheit.

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 9 of 15 www.4dsystems.com.au

Build and Upload the Project

For instructions on how to build and upload a ViSi-Genie project to the

target display, please refer to the section “Build and Upload the Project”

of the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly

used as examples, but the procedure is the same for other displays.

Writing the Host Code

A thorough understanding of the application note ViSi-Genie Connecting a

4D Display to an Arduino Host is required before attempting to proceed

further beyond this point. ViSi-Genie Connecting a 4D Display to an

Arduino Host provides all the basic information that a user needs to be

able to get started with ViSi-Genie and Arduino. The following is a list of

the topics discussed in ViSi-Genie Connecting a 4D Display to an Arduino

Host.

 How to download and install the ViSi-Genie-Arduino library

 How to open a serial port for communicating with the display and

how to set the baud rate

 The genieAttachEventHandler() function

 How to reset the host and the display

 How to set the screen contrast

 How to send a text string

 The main loop

 Receiving data from the display

 The use of a non-blocking delay in the main loop

 How to change the status of an object

 How to know the status of an object

 The user’s event handler

Discussion of any of these topics is avoided in other ViSi-Genie-Arduino

application notes unless necessary. Users are encouraged to read ViSi-

Genie Connecting a 4D Display to an Arduino Host first.

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 10 of 15 www.4dsystems.com.au

The Main Loop – Writing Data to the Display

The line

takes a digital signal level sample from sensorPin (A0) and converts it to a
temperature reading. The line performs the conversion shown below.

𝑡𝑒𝑚𝑝𝐶 = 𝑠𝑒𝑛𝑠𝑜𝑟𝑃𝑖𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑥
5 𝑣𝑜𝑙𝑡𝑠

1024 𝑙𝑒𝑣𝑒𝑙𝑠
 𝑥

1 𝑑𝑒𝑔𝑟𝑒𝑒 𝐶𝑒𝑙𝑠𝑖𝑢𝑠

10 𝑚𝑉𝑜𝑙𝑡𝑠

An additional 2 degrees Celsius is added

to account for the fact that the LM35 temperature sensor used in this
example has a voltage output starting at 0 mV and increasing at 10 mV per
degree from 2 to 150 degrees Celsius. Consult the datasheet for your LM35
temperature sensor for more information.

The lines

and

send the temperature values to the display module.

Set Up the Project

Refer to the section “Connect the Display Module to the Arduino Host” of

the application note “ViSi-Genie Connecting a 4D Display to an Arduino

Host” for the following topics:

 Using the New 4D Arduino Adaptor Shield (Rev 2.00)

o Definition of Jumpers and Headers

o Default Jumper Settings

o Change the Arduino Host Serial Port

o Power the Arduino Host and the Display Separately

 Using the Old 4D Arduino Adaptor Shield (Rev 1)

 Connection Using Jumper Wires

 Changing the Serial port of the Genie Program

 Changing the Maximum String Length

ADC resolution of

the Arduino Uno

Scale factor

of LM35

http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 11 of 15 www.4dsystems.com.au

Connect the LM35 Temperature Sensor to the Arduino

Refer to the datasheet for detailed information.

Schematic for LM35-to-Arduino-Uno connection (made with Fritzing)

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 12 of 15 www.4dsystems.com.au

Breadboard layout for LM35- to-Arduino-Uno connection (made with Fritzing)

The Complete Project

At room temperature:

The uUSB-PA5 is used only to power the display.

The LM35

temperature

sensor The uUSB - PA5

programming adapter

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 13 of 15 www.4dsystems.com.au

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 14 of 15 www.4dsystems.com.au

Temperature of a warm cup of water:

The LM35 temperature sensor is removed from the breadboard and

connected to the Arduino Uno using a three-way cable.

Temperature of a cold bottle of water:

4D SYSTEMS 4D-AN-00015

© 2014 4D Systems Page 15 of 15 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current

position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

